Triple differential cross sections for electron-impact ionization of helium are calculated in the distorted wave approximation. The distorted wave formalism is discussed for the z-axis parallel to the momentum transfer direction. Problems associated with programming this formalism are outlined. The cross sections are then compared to experimental results and other theoretical calculations.
COMPUTER CALCULATIONS OF CROSS SECTIONS FOR
ELECTRON IMPACT IONIZATION OF HELIUM

A Thesis
Presented to
The School of Graduate Studies
Drake University

In Partial Fulfillment
of the Requirements for the Degree
Master of Science

by
Bruce M. Bakken
June 1977
COMPUTER CALCULATIONS OF CROSS SECTIONS FOR
ELECTRON IMPACT IONIZATION OF HELIUM

by

Bruce M. Bakken

Approved by Committee:

Dr. Don H. Madison
Chairperson

Dr. Robert W. Lutz

Dr. Michael J. Folk

Dr. Earle L. Canfield
Dean of the School of Graduate Studies
# TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>LIST OF TABLES</th>
<th>iv</th>
</tr>
</thead>
<tbody>
<tr>
<td>LIST OF FIGURES</td>
<td>v</td>
</tr>
<tr>
<td>Chapter</td>
<td></td>
</tr>
<tr>
<td>1. INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>2. THEORY</td>
<td>6</td>
</tr>
<tr>
<td>3. RESULTS</td>
<td>13</td>
</tr>
<tr>
<td>4. CONCLUSIONS</td>
<td>29</td>
</tr>
<tr>
<td>REFERENCES</td>
<td>30</td>
</tr>
<tr>
<td>APPENDIX A</td>
<td>31</td>
</tr>
<tr>
<td>APPENDIX B</td>
<td>34</td>
</tr>
<tr>
<td>APPENDIX C</td>
<td>40</td>
</tr>
<tr>
<td>APPENDIX D</td>
<td>45</td>
</tr>
<tr>
<td>APPENDIX E</td>
<td>51</td>
</tr>
</tbody>
</table>
LIST OF TABLES

Table                                                                 Page

1. Comparison of cross sections in units of $a_o^2/Sr^2/Ry$ for $Z$ along $\overline{q}$ to the interpolated cross sections for $Z$ along $\overline{K}_i$ of Madison et al.  14

2. Table of cross sections for $Z$ along $\overline{q}$ in units of $a_o^2/Sr^2/Ry$, for comparison of partial wave parameters.  52
## List of Figures

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Sketch of the coordinate system for electron impact ionization with the Z axis oriented along the axis of incident particles.</td>
<td>4</td>
</tr>
<tr>
<td>2.</td>
<td>Sketch of the coordinate system for electron impact ionization with the Z axis oriented along the axis of momentum transfer.</td>
<td>19</td>
</tr>
<tr>
<td>3.</td>
<td>Triple Differential Cross Sections for 100 eV electron impact ionization of helium in units of $a_0^2/Sr^2/Ry$. The experimental data are those of Beatty, et al., the solid curve is the present DWA calculation; the dotted curve is the PWBA calculation and the dashed curve is the CPBA calculation. The angle of observation of the faster electron, $\theta_f$, is 20° and the energy of the slower electron, $E_s$, is 5 eV. The cross sections are for $\phi=0$ to 180° for a cone of half angle $\theta_s=45°$.</td>
<td>21</td>
</tr>
<tr>
<td>4.</td>
<td>Same as Figure 3 except $E_i=105$ eV and $E_s=10$ eV.</td>
<td>23</td>
</tr>
<tr>
<td>5.</td>
<td>Same as Figure 3 except $E_i=125$ eV, $E_s=30$ eV, and the cone is now centered about $\theta_s=30°$.</td>
<td>25</td>
</tr>
<tr>
<td>6.</td>
<td>Same as Figure 3 except $E_i=165$ eV, $E_s=70$ eV, and the cone is now centered about $\theta_s=25°$.</td>
<td>27</td>
</tr>
</tbody>
</table>
Chapter 1

INTRODUCTION

The problem of atomic charged particle scattering has been studied experimentally and theoretically since the 1920's. Until recently, first order approximations, such as the Plane Wave Born Approximation (PWBA) have yielded satisfactory results. However, with improved experimental techniques, detailed measurements of ionization cross sections have revealed structure that these first order theories cannot adequately explain. Recently, Erhardt et al., 1-4 Hood et al., 5 and Weigold 6 have measured triple differential cross sections for electron impact ionization. Various theoretical calculations for this process have been performed in the PWBA, 7-10 the Coulomb Projected Born Approximation (CPBA), 11 the many body Green's function approach, 12 and the Distorted Wave Approximation (DWA). 13 It has been shown that the distorted wave approach gives theoretical results that are in better agreement with the experimental data.

The triple differential cross sections predicted by the PWBA are azymuthally symmetric in a cone about the axis of momentum transfer \( \vec{q} = \vec{K}_i - \vec{K}_f \), where \( \vec{K}_i \) and \( \vec{K}_f \) are the wave number vectors of the incident and fast final state electrons respectively. Since the PWBA continues to be a standard reference, it is interesting to examine the behavior of
cross sections in the DWA expressed relative to the $q$ axis. Inasmuch as the previous DWA calculations were performed for the $Z$ axis oriented along $\vec{k}_1$, the cross sections for the cone about $\vec{q}$ could not readily be obtained. The subject of this thesis entails writing a computer program to calculate triple differential cross sections for electron impact ionization of helium for the cone about $q$ in the distorted wave approximation. The theory for the calculation in this rotated frame has been presented by Madison et al.\textsuperscript{13}

The physical phenomena connected with electron impact ionization can be described as follows: an electron with energy $E_i$ is incident on an atom initially at rest. The electron and the atom interact, scattering the incident electron and ejecting one of the atomic electrons, as shown in Figure 1. The scattering plane is defined by the momentum vectors of the incident and final faster electron. The kinematic quantities of interest are the angle of observation of the faster electron in the scattering plane, $\theta_f$, the solid angle of observation of the slower electron, $\theta_s$, $\phi_s$, and the energy of the slower electron $E_s$. Conservation of energy uniquely determines the energy of the faster electron. For such atomic scattering processes, a cross section is defined as the number of particles found at the two electron detectors divided by the incident flux.

In this thesis, the general theory of the distorted wave approximation for this process as derived by
Figure 1. Sketch of the coordinate system for electron impact ionization with the Z axis oriented along the axis of incident particles.
Figure 1
Madison et al.\textsuperscript{13} will be discussed, the problems encountered in implementing the theory with a computer program will be outlined, and the results will be compared to other theoretical approximations and the experimental results of Beatty et al.\textsuperscript{14}
Chapter 2

THEORY

In the notation used in this thesis, the triple differential cross section is denoted by \( \frac{d\sigma}{d\Omega_f d\Omega_s dE} \), where \( \Omega_f \) and \( \Omega_s \) are the solid angles of the detector for the fast and slow electrons respectively, and \( E \) is the energy of the ejected electron. According to Madison et al.\(^{13}\)

\[
\frac{d\sigma}{d\Omega_f d\Omega_s dE} = |f|^2 + |g|^2 - \text{Re}(f^*g) \tag{1}
\]

where \( f \) and \( g \) are the direct and exchange amplitudes respectively. These amplitudes may be written as

\[
f = (4\pi)^{-1} (k_i k_s k_f)^{-\frac{1}{2}} \sum |D_{\ell m_f}^{0m_s}(\theta_f)|^2 |m_s|^2 |m_f|^2 \text{im}_s \phi_s \tag{2}
\]

and

\[
g = (4\pi)^{-1} (k_i k_s k_f)^{-\frac{1}{2}} \sum |E_{\ell m_f}^{0m_s}(\theta_f)|^2 |m_s|^2 |m_f|^2 \text{im}_f \phi_f \tag{3}
\]

where \( p_{\ell m} \) is an associated Legendre polynomial, and where

\( D_{\ell m_f}^{0m_s}(\theta_f) \) and \( E_{\ell m_f}^{0m_s}(\theta_f) \) are the direct and exchange amplitude coefficients respectively. For the direct (exchange) case, the scattered (ejected) electron is the fast electron, while the ejected (scattered) electron is the slow electron. Consistent with the fast and slow notation, the angular momentum quantum numbers for the effected
electron are denoted by \( \ell_s (\ell_f) \) for the direct (exchange) case and \( \ell_o \) and \( m_o \) are the angular momentum quantum numbers for the ground state of the atom. For the case of electron impact ionization of helium, the atom is in a singlet \( S \) state; hence \( \ell_o = m_o = 0 \).

The expressions for \( D^0 \_0 \_m_s \) and \( E^0 \_0 \_m_f \) depend on the choice of coordinate system. As discussed earlier, in this problem the \( Z \) axis is oriented along the axis of momentum transfer. For this orientation the direct and exchange amplitude coefficients are given by the following expressions:

\[
D^0 \_0 \_m_s = \sum \frac{\ell_i \ell_f^2}{\ell_s^2} \left( \ell_i - \ell_f - \ell_s \right) \frac{[2m_s + |m_f| + |m_s| + |m_s - m_f|]}{2} (-1)
\]

\[
\times k_i k_f \kappa_s \frac{C(\ell_i, \ell_f, \ell_s; m_s - m_f, m_f, m_s) C(\ell_i, \ell_f, \ell_s; 0, 0, 0)}{|m_f|} \frac{|m_s|}{|m_s - m_f|} P_{\ell_f}(\beta) P_{\ell_i}(\alpha)
\]

and

\[
E^0 \_0 \_m_f = \sum \frac{\ell_i \ell_s^2}{\ell_f^2} \left( \ell_i - \ell_f - \ell_s \right) \frac{[2m_s + |m_f| + |m_s| + |m_s - m_f|]}{2} (-1)
\]

\[
\times C(\ell_i, \ell_f, \ell_s; m_s + m_f, -m_f, m_s) C(\ell_i, \ell_f, \ell_s; 0, 0, 0) \frac{k_i k_s k_f}{\ell_i \ell_f \ell_s} \frac{|m_f|}{|m_s|} \frac{|m_s + m_f|}{|m_s + m_f|} \frac{|m_s|}{|m_s - m_f|} \frac{P_{\ell_f}(\beta)}{P_{\ell_i}(\alpha)}
\]
where $\alpha$ is the angle between $\vec{K}_i$ and $\vec{q}$, $\beta = \alpha + \theta_f$, 

$$R^{|m|}_l = \frac{\Gamma_{l+|m|} \Gamma_{l-|m|}}{\Gamma_{l}}$$

and $C$ is a Clebsch-Gordon coefficient. $I_{\ell_i \ell_f \ell_S}^{k_1 k_2 k}$ is an overlap integral defined as follows:

$$I_{\ell_i \ell_m \ell_n}^{\ell_f \ell_l \ell_s} = \int_0^{\infty} \beta_{\ell_i \ell_m} (k_i R) \beta_{\ell_f \ell_s} (k_f R) F_{\ell_f \ell_l \ell_s} (R) dR$$

where

$$F_{\ell_f \ell_l \ell_s} (R) = \int_0^{\infty} \beta_{\ell_f \ell_l} (k_f R) \frac{r^\ell}{r^2} U_{\ell} (r) dr$$

and $\beta_{\ell_f}$, $\beta_{\ell_l}$ and $\beta_{\ell_i}$ are solutions to the radial Schrödinger equation,

$$\frac{-n^2}{2m} \frac{d^2 \beta}{dr^2} + \left[ \frac{n^2 (\ell (\ell + 1))}{2m r^2} + V(r) \right] \beta = E \beta$$

such that for the direct case, $n=s$ and $m=f$, and for the exchange case $n=f$ and $m=s$. In this calculation, it is assumed that the fast electron is effectively scattered by the neutral atom, and the slow final state electron is scattered by the ion. As a result, the atomic potential $V(r)$ used for the incident and fast final state electron in the radial Schrodinger equation is a numerical Hartree Fock potential for neutral helium which approaches zero asymptotically. The potential used for the slow electron is a Hartree Fock potential which approaches a Coulomb potential asymptotically. $U_{\ell_o} (r)$ is the bound state wave
function of the helium atom obtained from the neutral Hartree Fock calculations.

In the radial Schrödinger equation, the angular momentum barrier, \( \frac{\hbar^2 \ell (\ell+1)}{2m r^2} \) provides a region around the nucleus into which the electron cannot effectively penetrate. For high values of angular momentum the range of this barrier becomes greater than the effective range of the atomic potential. Partial waves with large angular momenta may be approximated by spherical Bessel functions, which are the solutions to the radial Schrödinger equation for \( V=0 \).

A cutoff angular momentum, \( l_c \), may then be defined as the angular momentum for which the numerical partial waves may be replaced by spherical Bessel functions. For values of \( r \) greater than the range of the atomic potential, the form factor integral in equation 7 is merely a constant divided by \( r \). \( k_{ik} k_{fs} \) is then an integral of two spherical Bessel functions divided by the radius. This integral may be done analytically and the result can be expressed in terms of hypergeometric functions. Consequently, the overlap integral can be calculated analytically in the direct case for \( l_i > l_c \).

It should be noted that for \( l_i > l_c \), the DWA amplitude becomes the PWBA amplitude. Obviously, this method cannot be used for the exchange amplitude, since the roles of the electrons are reversed and the integral of equation 6 contains a Coulomb wave function. In these calculations, the value of \( l_c \) is about 20.
Since a computer program to calculate $I_{kikf}^{lsl_f}$ is available from previous work, this task consisted of writing a FORTRAN program to calculate the direct and exchange amplitude coefficients, the direct and exchange amplitudes and finally, the cross sections. Flow charts for the program, the direct and exchange amplitude coefficient calculators and the amplitude and cross section calculator are displayed in Appendices A through D, respectively.

Due to the complexity of the algorithms used, careful attention must be paid to numerical stability. Large values of $l_f$ and $m_f$ introduce particular difficulty in the calculation of the associated Legendre polynomials due to the iterative procedure used in that routine. Other difficulties arise due to the size of the problem. In the direct and exchange coefficient calculators alone, for an average run, over five million calculations are performed. Of these calculations, roughly one million are calls to subroutines. Due to a limited amount of core storage, over 500 complex arrays had to be stored on mass storage devices.

In writing a complicated routine with many nested DO loops to compute the various summations, the order of the loops must be carefully planned. In the routine to calculate the overlap integrals, the integrals are stored as a function of $l_s$ and $m_s$, thus they must be referenced as a function of $l_s$ and $m_s$. This dictates that the outermost loop be the
loop for $l_s$ and the first nested loop be the loop for $m_s$, which runs from $-l_s$ to $+l_s$. Even though the summation in equation 4 does not have either $l_s$ or $m_s$ as indices, these loops must be the outermost loops as the final result is stored as a function of $l_s$ and $m_s$.

The summation itself begins with a loop over the index $l_f$, which has values ranging from zero to some maximum value set arbitrarily. The optimum maximum values for $l_f$ and $l_s$ will be discussed later. The loop over $l_f$ also contains an $m_f$ loop ranging from $-l_f$ to $+l_f$. However, before the $m_f$ loop, a loop over $l_i$ was incorporated. The index $l_i$ runs from $|l_s-l_f|$ to $l_s+l_f$ incremented by two due to the parity of the Clebsch-Gordon coefficient. To maximize the efficiency of the program, variables not depending on $m_f$ are calculated outside that loop. These variables included an associated Legendre polynomial and a Clebsch-Gordon coefficient. All other parameters in the calculation depend in one way or another on $m_f$, including an additional associated Legendre polynomial and Clebsch-Gordon coefficient. These terms are collected, multiplied, and stored for later use by the cross section routine.

The order of the nesting of the loops is critical in terms of economy of machine time. If the loops are nested in reverse order, the associated Legendre polynomial subroutine will be called approximately eight million times. Using the nesting scheme as described above, the associated
Legendre polynomial subroutine is called about 164,000 times.

The routine for the exchange amplitude coefficient is almost exactly the same as the routine for the direct amplitude coefficient with one major exception: the roles of \( l_f m_f \) and \( l_s m_s \) are reversed. The summation is now performed over the indices \( l_s \) and \( m_s \), and the coefficient must be stored as a function of \( l_f \) and \( m_f \). Even with these conditions, the \( l_s \) loop must still be the outermost loop since the overlap integrals are read into the routine as a function of \( l_s \) and \( m_s \). This necessitates a backward summing technique such that the final results are written as a function of the inner loop indices.

One problem encountered in the programming involved the storage of over 500 complex arrays. Since all available core memory was being utilized, a convenient technique of saving information on mass storage was needed. A sequential writing process was not convenient since accessing the overlap integrals required a nonsequential usage and reusage of various blocks of data. A subroutine was needed that could read and write arrays on mass storage such that each element of the array could be accessed by an appropriate index. The Control Data Fortran Extended library subroutines READMS and WRITMS have these features and their incorporation into the routines solved the storage problem.
Chapter 3

RESULTS

Once the program was written and debugged, testing for correctness began. The best test for correctness was to reproduce the earlier results of Madison et al.\(^{13}\) For this comparison, the following parameters were used: \(E_i = 256.5\) eV, \(E_s = 50\) eV, \(\theta_f = 8^\circ\), \(\ell_i = 98\), \(\ell_c = 40\), \(\ell_s = 7\) for the direct case, and \(\ell_i = 30\), and \(\ell_s = 12\) for the exchange case. The results of this calculation could not be compared directly to the results of Madison due to the rotation of the Z axis from \(\vec{K_i}\) to \(\vec{q}\). However, an easy comparison can be made in the scattering plane where the cross sections are simply shifted linearly by the angle between \(\vec{K_i}\) and \(\vec{q}\). For the above parameters, this angle was \(35.26^\circ\). A linear interpolation was then performed for Z along \(\vec{K_i}\) and compared directly to the results for Z along \(\vec{q}\). The results are shown in Table 1. Clearly, both calculations yield the same results.

Once the program had been checked, the optimum number of partial waves needed for proper convergence of the cross sections had to be obtained. Since comparisons were to be made with the experimental results of Beatty et al.\(^{14}\), the appropriate optimum maximum \(\ell\)-values for \(E_i \gtrsim 100\) eV were required. These optimum \(\ell\)-values are found as follows: all but one of the partial wave parameters are kept constant,
Table 1
Comparison of Cross Sections in Units of $a_0^2$/Sr²/Ry for Z Along $q$ to the Interpolated Cross Sections for Z Along $K_i$ of Madison et al.

<table>
<thead>
<tr>
<th>$\theta$</th>
<th>Q axis</th>
<th>K axis (interpolated)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>For $\phi = 0^\circ$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>$4.927 \times 10^{-4}$</td>
<td>$4.927 \times 10^{-4}$</td>
</tr>
<tr>
<td>10</td>
<td>6.762</td>
<td>6.761</td>
</tr>
<tr>
<td>20</td>
<td>7.768</td>
<td>7.766</td>
</tr>
<tr>
<td>30</td>
<td>6.581</td>
<td>6.581</td>
</tr>
<tr>
<td>40</td>
<td>3.664</td>
<td>3.665</td>
</tr>
<tr>
<td>50</td>
<td>1.373</td>
<td>1.374</td>
</tr>
<tr>
<td>60</td>
<td>.817</td>
<td>.818</td>
</tr>
<tr>
<td>70</td>
<td>1.108</td>
<td>1.108</td>
</tr>
<tr>
<td>80</td>
<td>1.257</td>
<td>1.257</td>
</tr>
<tr>
<td>90</td>
<td>1.101</td>
<td>1.101</td>
</tr>
<tr>
<td>100</td>
<td>.911</td>
<td>.911</td>
</tr>
<tr>
<td>110</td>
<td>.846</td>
<td>.846</td>
</tr>
<tr>
<td>120</td>
<td>.903</td>
<td>.903</td>
</tr>
<tr>
<td>130</td>
<td>1.026</td>
<td>1.025</td>
</tr>
<tr>
<td>140</td>
<td>1.162</td>
<td>1.162</td>
</tr>
<tr>
<td>150</td>
<td>1.268</td>
<td>1.269</td>
</tr>
<tr>
<td>160</td>
<td>1.326</td>
<td>1.326</td>
</tr>
<tr>
<td>170</td>
<td>1.340</td>
<td>1.340</td>
</tr>
<tr>
<td>180</td>
<td>1.328</td>
<td>1.328</td>
</tr>
<tr>
<td>For $\phi = 180^\circ$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>$4.926 \times 10^{-4}$</td>
<td>$4.926 \times 10^{-4}$</td>
</tr>
<tr>
<td>10</td>
<td>3.412</td>
<td>3.412</td>
</tr>
<tr>
<td>20</td>
<td>2.256</td>
<td>2.256</td>
</tr>
<tr>
<td>30</td>
<td>1.281</td>
<td>1.281</td>
</tr>
<tr>
<td>40</td>
<td>.731</td>
<td>.732</td>
</tr>
<tr>
<td>50</td>
<td>.687</td>
<td>.687</td>
</tr>
<tr>
<td>60</td>
<td>.894</td>
<td>.894</td>
</tr>
<tr>
<td>70</td>
<td>1.107</td>
<td>1.107</td>
</tr>
<tr>
<td>80</td>
<td>1.235</td>
<td>1.235</td>
</tr>
<tr>
<td>90</td>
<td>1.286</td>
<td>1.287</td>
</tr>
<tr>
<td>100</td>
<td>1.293</td>
<td>1.294</td>
</tr>
<tr>
<td>110</td>
<td>1.282</td>
<td>1.282</td>
</tr>
<tr>
<td>120</td>
<td>1.268</td>
<td>1.269</td>
</tr>
<tr>
<td>130</td>
<td>1.261</td>
<td>1.261</td>
</tr>
<tr>
<td>140</td>
<td>1.258</td>
<td>1.258</td>
</tr>
<tr>
<td>150</td>
<td>1.266</td>
<td>1.266</td>
</tr>
<tr>
<td>160</td>
<td>1.285</td>
<td>1.284</td>
</tr>
<tr>
<td>170</td>
<td>1.306</td>
<td>1.304</td>
</tr>
<tr>
<td>180</td>
<td>1.328</td>
<td>1.327</td>
</tr>
</tbody>
</table>
and the cross sections for different values of the varied \( \ell \)-value are compared. The cross sections are considered to have converged when an increase in the number of partial waves does not change the third significant digit. Generally, the \( \ell \)-values were increased between two and five for this comparison. While it may appear that this procedure is inefficient and time consuming and a wiser option might be to set the \( \ell \)-values at some arbitrarily large value, in fact this is not feasible since computer time increases dramatically with the number of partial waves. Round-off and truncation errors can effect the cross sections significantly if the \( \ell \)-values become too large.

The initial trials for the appropriate \( \ell \)-values were based on the calculation for \( E_i = 256.5 \) eV. With these parameters, the program took more than four hours of central processor time to execute, which exceeded the maximum amount of computer time available. These trial values resulted in over four million subroutine calls in the amplitude coefficient calculators alone. Consequently, lower estimates had to be for the \( \ell \)-values. Using the above mentioned technique, the following optimum maximum \( \ell \)-values were found: \( \ell_i = 50 \), \( \ell_c = 20 \) and \( \ell_s = 9 \) for the direct case, and \( \ell_i = 30 \) for the exchange case. Comparisons justifying these values are shown in the tables in Appendix E.

The optimum value for \( \ell_s \) in the exchange case was found to be fourteen, but such a high value resulted in
program execution times which exceeded the available time. It was necessary, therefore, to accept lesser accuracy to decrease the computer time. The maximum value used for \( \ell_s \) in the exchange case was six. This value introduced approximately a 2\% error into the exchange amplitude.

Using these \( \ell \)-values, triple differential cross sections were calculated for comparison with the results of Beatty et al.\(^{14} \) The kinematic parameters used for these calculations are as follows:

1) \( E_i = 100 \text{ eV} \)
   \( E_s = 5 \text{ eV} \)
   \( \theta_f = 20^\circ \)

2) \( E_i = 105 \text{ eV} \)
   \( E_s = 10 \text{ eV} \)
   \( \theta_f = 20^\circ \)

3) \( E_i = 125 \text{ eV} \)
   \( E_s = 30 \text{ eV} \)
   \( \theta_f = 20^\circ \)

4) \( E_i = 165 \text{ eV} \)
   \( E_s = 70 \text{ eV} \)
   \( \theta_f = 20^\circ \)

The cross sections were calculated for \( \theta_s \) between \( 0^\circ \) and \( 180^\circ \) in steps of \( 1^\circ \); and for \( \phi_s \) from \( 0^\circ \) to \( 180^\circ \) in steps of \( 3^\circ \). It is not necessary to calculate \( \phi_s \) from \( 360^\circ \) to \( 180^\circ \) as it is a mirror image of \( \phi_s \) from \( 0^\circ \) to \( 180^\circ \), as shown by Madison et al.\(^{13} \) The results of these calculations are shown in Figures 3 through 6. The solid curve corresponds to this distorted wave calculation, the dashed curve represents the CPBA cross sections calculated by Geltman,\(^{11} \) and the dotted curve corresponds to the PWBA cross sections which are calculated from an available program, and the large dots are the experimental results.
In Figures 3 through 6, the cross sections are plotted in units of $a_0^2/\text{sr}^2/\text{Ry}$, where $a_0$ is the Bohr radius, sr is the angular unit steradians, and Ry is the energy unit Rydberg. The kinematic parameters for figure three are as follows: the incident electron energy is 100 eV, the faster final state electron is observed at an angle of 20° in the scattering plane, and a 5 eV slower electron is detected. Cross sections are presented for a cone about $q$ of half angle 45° for various azymuthal angles on the cone between 0° and 180°, as shown in Figure 2. The cone is centered on the momentum transfer direction with $\phi=0$ corresponding to the half of the scattering plane containing the scattered fast electron, and $\phi=180°$ corresponding to the other half. For this case it is seen that the PWBA amplitude is much too large and the CPBA grossly overpredicts the asymmetrical behavior of the data, while the DWA not only has the correct basic shape, but the amplitude does not leave the range of error of the experimental points. In Figure 4, $E_i$ and $E_s$ both have been incremented by 5 eV while the other kinematic parameters remain the same. The CPBA is in better agreement with the experimental data at smaller angles while at larger angles the DWA is closer. The PWBA is again too large. In Figure 5, $E_i$ and $E_s$ are both incremented by another 20 eV, while the half angle of the cone is decreased to 30°. Here it may be seen that the DWA predicts the shape of the experimental data while the CPBA does not. Finally in
Figure 2. Sketch of the coordinate system for electron ionization with the Z axis oriented along the axis of momentum transfer.
Figure 3. Triple differential cross sections for 100 eV electron impact ionization of helium in units of $a_0^2/\text{sr}^2/\text{Ry}$. The experimental data are those of Beatty, et al., the solid curve is the present DWA calculation; the dotted curve is the PWBA calculation and the dashed curve is the CPBA calculation. The angle of observation of the faster electron, $\theta_f$, is 20° and the energy of the slower electron, $E_s$, is 5 eV. The cross sections are for $\phi=0$ to 180° for a cone of half angle $\theta_s=45°$. 
Figure 4. Same as Figure 3 except $E_i=105$ eV and $E_s=10$ eV.
Figure 4
Figure 5. Same as Figure 3 except $E_i=125$ eV, $E_s=30$ eV, and the cone is now centered about $\theta_s=30^\circ$. 
Figure 6. Same as Figure 3 except $E_i=165$ eV,
$E_s=70$ eV, and the cone is now centered
about $\theta_s=25^\circ$. 
Figure 6
Figure 6, $E_i$ and $E_s$ are both incremented by another 40 eV while the half angle of the cone is decreased to 25°. In this case the CPBA is in better agreement with the experimental data than the DWA.

The azimuthal symmetry of the PWBA for $Z$ along $\vec{q}$ is reflected by the constant cross section as a function of $\phi_s$. The CPBA predicts a major asymmetry in the cross sections with a maximum near $\phi=180°$. The DWA, on the other hand, is smaller in magnitude and predicts only a small asymmetry in the cross sections similar in shape to the experimental results. Since the experimental results are accurate to within a factor of two, the DWA affords better agreement with the experiment than either the CPBA or the PWBA simply because it predicts the asymmetry of the cross sections without overestimating the amplitude.
In conclusion, it may be noted from Madison et al.\textsuperscript{13} that the DWA was superior to the CPBA which was superior to the PWBA in reproducing experimental results for higher energies of the incident electron. In this thesis, both the DWA and the experimental data exhibit only a small asymmetry in a cone about the momentum transfer direction, a feature of the PWBA. This observation is interesting for two reasons: first, one would not expect the results to be Born-like for incident energies in this range. Secondly, it is interesting to note that while the magnitude of the DWA is significantly different from the PWBA the behavior of the two approximations are similar. Surprisingly, the simple PWBA once again appears to be qualitatively correct in its prediction of the physics even though the PWBA magnitude may not be reliable.
REFERENCES


START

READ ALL INITIALIZATION INFORMATION

EXECUTE THE DIRECT CASE?

no

Calculate Wave Functions for all \( l \) values

Calculate Form Factor Integral

Calculate Overlap Integral

Calculate the Direct Amplitude Coefficient

EXECUTE THE EXCHANGE CASE?

no

yes

Switch roles of scattered and ejected electrons

A

B
Calculate Overlap

A

Calculate Wave Functions for all \( l \) values

Calculate Form Factor Integral

Calculate Overlap Integral

Calculate the Exchange Amplitude Coefficient

B

Calculate the Direct and Exchange Amplitudes

Calculate the Direct, Exchange and Total Cross Sections

PRINT OUT ALL ESSENTIAL INFORMATION

STOP
Initialize all arrays and counters to zero

Calculate the angle between $\vec{k}$ and $\vec{q}$

$\ell_s = 0$

Read the Overlap Integrals

Set $\text{MMAX} = 2\ell_s$

$\text{mm}_s = 0$

$\text{m}_s = \text{mm}_s - \ell_s$

$\text{m}_s\text{ABS} = |\text{m}_s|$

$\ell_f = 0$
Calculate:
\[ \ell_i = -|\ell_f - \ell_s| \]

Calculate:
\[ m_f = P_{\ell_f} = (\beta) \]
\[ C(\ell_i, \ell_f, \ell_s; 0, 0, 0) \]
\[ m_f^{\text{MAX}} = 2 \ell_f \]

\[ \text{mbs} = 0 \]

\[ m_f = \text{mbs} - \ell_f \]

Calculate:
\[ C(\ell_i, \ell_f, \ell_s; m_s - m_f, m_f, m_s) \]
\[ \frac{|m_f|}{R_{\ell_f}} \quad \frac{|m_s|}{R_{\ell_i}} \quad \frac{|m_s - m_f|}{R_{\ell_i}} \]
Calculate:
\[ |m_s - m_f| \]
\[ p_i \]
\[ (\ell_i - \ell_f - \ell_s) \]
\[ ((2m_s + |m_f| + |m_s| + |m_s - m_f|)/2)^{-1} \]

multiply all terms and calculate
\[ \text{COEFF}(\ell_s, m_s) = \text{COEFF}(\ell_s, m_s) + \text{TERM} \]

\[ mbs = mbs + 1 \]

\[ < \]

\[ \text{mbs} \geq \text{m}_f \text{MAX} \]
\[ l_i = l_i + 2 \]

\[ l_i : l_f + l_s \]

\[ l_f \geq l_f + 1 \]

\[ m_s = m_s + 1 \]

\[ m_s : m_{MAX} \]

\[ m_s \geq M_{MAX} \]
\( l_s = l_s + 1 \)

\( l_s < l_s \text{ MAX} \)

\( MMAX = 2 \times l_s \text{ MAX} + 1 \)

\( KOUNT = 0 \)

\( l = 1 \)

\( m = 1 \)

\( KOUNT = KOUNT + 1 \)

\( \text{COEF}(KOUNT) = \text{COEFF}(l, m) \)

\( m = m + 1 \)

\( l = l + 1 \)

\( m < MMAX \)

\( l < l_s \text{ MAX} \)

\( l > l_s \text{ MAX} \)

Write COEF array on disk

STOP
Initialize all arrays and counters to zero

Calculate the angle between \( \vec{K}_1 \) and \( \vec{q} \)

\[ l_s = 0 \]

Read the Overlap Integral

Set \( M_{\text{MAX}} = 2l_s \)

\[ m_m = 0 \]

\[ m_s = m_m - l_s \]

\[ m_s_{\text{ABS}} = |m_s| \]

\[ l_f = 0 \]

\[ l_i = -|l_f - l_s| \]
Calculate:

\[ P_{\ell_S}^m (\beta) \]

\[ C(\ell_i, \ell_f, \ell_s; 0, 0, 0) \]

\[ m_f \text{MAX} = 2 \cdot \ell_f \]

\[ m_{bs} = 0 \]

\[ m_f = m_{bs} - \ell_f \]

Calculate:

\[ C(\ell_i, \ell_f, \ell_s; m_s + m_f, -m_f, m_s) \]

\[ R_{\ell_i} \]

\[ R_{\ell_f} \]

\[ R_{\ell_s} \]

\[ P_{\ell_i}^m (\alpha) \]

\[ (l_i - l_f - l_s) \]

\[ ((2m_s + |m_f| + |m_s| + |m_s + m_f|)/2) \]

\[ (-1) \]

multiply all terms and calculate

\[ \text{COEFF}(\ell_f, m_f) = \text{COEFF}(\ell_f, m_f) + \text{TERM} \]
B

\[ m_{bs} = m_{bs} + 1 \]

C

\[ m_{bs} : m_f^{MAX} \]

D

\[ l_i = l_i + 2 \]

E

\[ l_i : l_f + l_s \]

\[ l_f = l_f + 1 \]

F

G

\[ m_s : m_s^{MAX} \]

\[ m_s = m_s + 1 \]
\$l_s = l_s + 1\$

\$l_s ; l_s^{\text{MAX}}\$

\$m_f^{\text{MAX}} = 2 \times l_f^{\text{MAX}} + 1\$

\$\text{KOUNT} = 0\$

\$l = 1\$

\$m = 1\$

\$\text{KOUNT} = \text{KOUNT} + 1\$

\$\text{COEF}(\text{KOUNT} = \text{COEFF}(l, m))\$

\$m = m + 1\$

\$l = l + 1\$

\$m ; m_f^{\text{MAX}}\$

\$l ; l_f^{\text{MAX}}\$

Write COEF array on disk

STOP
APPENDIX D
START

Initialize arrays to zero

Read the array COEF from disk for the direct case

Decode the array COEF and store in the array COEFF1

Read the array COEF from disk for the exchange case

Decode the array COEF and store in the array COEFF2

A
If NCHAN = 1
\[
\text{SUM} = \text{SUM} + P_L^M(\theta) \times \text{COEFF1}(L, M) \times (\cos(\phi) + i \times \sin(\phi))
\]

Otherwise
\[
\text{SUM} = \text{SUM} + P_L^M(\theta) \times \text{COEFF2}(L, M) \times (\cos(\phi) + i \times \sin(\phi))
\]
\[ M = M + 1 \]
\[ L = L + 1 \]

\[ \text{Amplitude}(\text{NCHAN}, \theta) = \text{SUM} \]
\[ \theta = \theta + d\theta \]
\[ \text{NCHAN} = \text{NCHAN} + 1 \]

\[ \theta < \theta_{\text{max}} \]
\[ \theta \geq \theta_{\text{max}} \]
\[ \text{NCHAN} < 2 \]
\[ \text{NCHAN} \geq 2 \]
Write the CROSX array as a function of $\theta$ for this value of $\phi$. 

The flowchart starts with $\theta = 0$ and $K = 1$. The CROSX array is defined as:

$$CROSX(K, \theta) = AMP(K, \theta) \cdot (AMP(K, \theta))^* \cdot K = K + 1$$

If $K < 2$, the flowchart continues with:

$$CROSX(3, \theta) = CROSX(1, \theta) + CROSX(2, \theta) - \text{Re}((AMP(1, \theta) \cdot AMP(2, \theta)))$$

$$\theta = \theta + d\theta$$

If $\theta < \theta_{\text{max}}$, the flowchart continues. If $\theta \geq \theta_{\text{max}}$, the flowchart ends with the statement: "Write the CROSX array as a function of $\theta$ for this value of $\phi$."

The flowchart then returns to the initial conditions with $K = 1$. The process repeats until the condition $\theta \geq \theta_{\text{max}}$ is met.
\( \phi = \phi + d\phi \)

\( \phi > \phi_{\text{max}} \)

\( \phi < \phi_{\text{max}} \)

STOP
APPENDIX E
Table 2

Table of Cross Sections for \( Z \) Along \( \bar{q} \) in Units of \( a_o^2/Sr^2/Ry \), For Comparison of Partial Wave Parameters.

<table>
<thead>
<tr>
<th>( \theta )</th>
<th>( L_f=40 ) ( L_s=7 )</th>
<th>( L_f=50 ) ( L_s=9 )</th>
<th>( L_f=75 ) ( L_s=11 )</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>2.045 x 10^{-1}</td>
<td>2.040 x 10^{-1}</td>
<td>2.039 x 10^{-1}</td>
</tr>
<tr>
<td>30</td>
<td>.906</td>
<td>.908</td>
<td>.908</td>
</tr>
<tr>
<td>60</td>
<td>.467</td>
<td>.467</td>
<td>.467</td>
</tr>
<tr>
<td>90</td>
<td>.598</td>
<td>.598</td>
<td>.598</td>
</tr>
<tr>
<td>120</td>
<td>.618</td>
<td>.618</td>
<td>.618</td>
</tr>
<tr>
<td>150</td>
<td>.661</td>
<td>.662</td>
<td>.662</td>
</tr>
<tr>
<td>180</td>
<td>.705</td>
<td>.701</td>
<td>.701</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>( \theta )</th>
<th>( L_f=20 ) ( L_s=9 )</th>
<th>( L_f=30 ) ( L_s=11 )</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>2.021 x 10^{-1}</td>
<td>2.021 x 10^{-1}</td>
</tr>
<tr>
<td>30</td>
<td>.897</td>
<td>.897</td>
</tr>
<tr>
<td>60</td>
<td>.471</td>
<td>.471</td>
</tr>
<tr>
<td>90</td>
<td>.604</td>
<td>.604</td>
</tr>
<tr>
<td>120</td>
<td>.618</td>
<td>.618</td>
</tr>
<tr>
<td>150</td>
<td>.657</td>
<td>.657</td>
</tr>
<tr>
<td>180</td>
<td>.695</td>
<td>.695</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>( \theta )</th>
<th>( L_f=40 ) ( L_s=7 )</th>
<th>( L_f=50 ) ( L_s=9 )</th>
<th>( L_f=75 ) ( L_s=11 )</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>2.045 x 10^{-1}</td>
<td>2.045 x 10^{-1}</td>
<td>2.035 x 10^{-1}</td>
</tr>
<tr>
<td>30</td>
<td>.906</td>
<td>.906</td>
<td>.897</td>
</tr>
<tr>
<td>60</td>
<td>.467</td>
<td>.467</td>
<td>.472</td>
</tr>
<tr>
<td>90</td>
<td>.598</td>
<td>.598</td>
<td>.608</td>
</tr>
<tr>
<td>120</td>
<td>.619</td>
<td>.619</td>
<td>.622</td>
</tr>
<tr>
<td>150</td>
<td>.661</td>
<td>.661</td>
<td>.656</td>
</tr>
<tr>
<td>180</td>
<td>.705</td>
<td>.705</td>
<td>.700</td>
</tr>
</tbody>
</table>
Table 2 (Continued)

<table>
<thead>
<tr>
<th>EXCHANGE</th>
<th>( L_s = 8 )</th>
<th>( \phi = 0 )</th>
</tr>
</thead>
<tbody>
<tr>
<td>( \theta )</td>
<td>( L_f = 30 )</td>
<td>( L_f = 40 )</td>
</tr>
<tr>
<td>0</td>
<td>( 7.546 \times 10^{-3} )</td>
<td>( 7.546 \times 10^{-3} )</td>
</tr>
<tr>
<td>30</td>
<td>9.063</td>
<td>9.066</td>
</tr>
<tr>
<td>60</td>
<td>2.568</td>
<td>2.569</td>
</tr>
<tr>
<td>90</td>
<td>2.719</td>
<td>2.718</td>
</tr>
<tr>
<td>120</td>
<td>2.883</td>
<td>2.883</td>
</tr>
<tr>
<td>150</td>
<td>3.382</td>
<td>3.382</td>
</tr>
<tr>
<td>180</td>
<td>3.964</td>
<td>3.964</td>
</tr>
</tbody>
</table>