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Abstract—Network coding, a networking paradigm in which
different pieces of data are coded together at various points along
a transmission, has been proposed for providing a number of
benefits to networks including increased throughput, robustness,
and security. For optical networks, the potential for using
network coding to provide survivability is especially noteworthy
as it may be possible to allow for the ultra-fast recovery time
of dedicated protection schemes with the bandwidth efficiency
of shared protection schemes. However, the need to perform
computations at intermediate nodes along the optical route leads
to the undesirable necessity of either electronically buffering and
processing the data at intermediate nodes or outfitting the net-
work with complex photonic circuits capable of performing the
computations entirely within the optical domain. In this paper,
we take the latter approach but attempt to mitigate the impact of
the device complexity by proposing a low-complexity, all-optical
network coder architecture. Our design provides easily scalable,
powerful digital network coding capabilities at the optical layer,
and we show that existing network coding algorithms can be
adjusted to accommodate it.

I. INTRODUCTION

Network coding is a networking paradigm in which inter-
mediate nodes in a network code together data from different
input channels before transmitting on outgoing channels. Since
it was introduced by Ahlswede et al. [1], network-coding-
based strategies have been proposed for increasing network
throughput, robustness, and security. The potential of realiz-
ing these benefits in optical networks, especially for optical
protection has recently become an active area of research.
Kamal et al. proposed network-coding schemes for survivable
optical networks [2], [3], [4] in which electronic network
coding operations supported the optical protection schemes.
Menendez and Gannet [5] proposed performing the coding
operations for survivability at the optical layer using all-
optical XOR logic gates, and Hisano et al. [6] and An et al.
[7] recently demonstrated network coding functionality using
all-optical XOR logic gates. We investigated optical switch
and optical network coder architectures which would provide
unrestricted digital network coding capabilities at the optical
layer [8], and Liu et al. applied an asynchronous network
coding strategy at the optical layer [9].

In this paper, we propose a new design for a low-complexity,
all-optical network coder device for providing digital network
coding capabilities. The proposed design relies on optical XOR

technologies, tunable optical delays (TODs), and small optical
switching components; and it scales to accommodate long
codes through longer optical delays. In order to achieve this
low complexity, we place restrictions on the network codes,
but we show that existing network coding algorithms can be
adjusted to accommodate the restrictions and still provide
the same network coding benefits. In the next section, we
motivate the problem by showing how network coding can be
beneficial for optical network survivability. In Section III, we
discuss some of the research into the component technology
which could be used in our coding architecture, and then we
propose our design in Section IV. In Section V, we discuss
the necessary adjustments to network coding algorithms, and
finally, we conclude in Section VI.

II. NETWORK CODING AND OPTICAL NETWORK
SURVIVABILITY

Given the tremendous bandwidth available on a given op-
tical fiber, the impact of a network failure such as a fiber cut
or switch failure is especially costly. For this reason, there has
been much research into finding ways to allow networks to
recover from faults quickly with as little overhead as possible.

A. Dedicated and Shared Protection

One straightforward approach to optical survivability is to
simply send a redundant-copy along a second physically-
disjoint route. If a failure occurs on the primary route, then
the message is still received on the backup route. This results
in high connection availability and, if the propagation delay
difference between the primary and backup routes is small
enough, leads to very fast recovery. This kind of protection,
however, is very expensive as it at least doubles the cost of
deploying a connection. To cut down on this cost, the backup
routes can be shared among several different potential failure
scenarios [10]. For instance, consider the network in Figure
1(a), in which we have two connections to destination node d
from sources s1 and s2 respectively. The two primary routes
are shown with a heavy, red line and labeled with their data
streams, a and b. The backup routes are shown with dashed,
blue lines and labeled a′ and b′ to denote contingency routes
for their respective streams. Note that the portion of the backup
route from q to d is shared by both connections. Since both
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Fig. 1. Examples of two forms of protection

connections cannot use it simultaneously, neither connection
transmits along it unless there is a failure along a primary
route. In the event of a failure on link (s2, p), b would be
transmitted over 〈s2, q, d〉 without having to take the time
to compute a new route. Likewise, if there were a failure
along a’s primary route, then link (q, d) would be used in a’s
recovery. This method has the benefit of saving on bandwidth,
but it comes at the cost of a delay in the reestablishing of
the connections due to the time it takes to discover the error,
reconfigure the switch at q, and propagate along the entire
backup route.

With network coding, we can further improve on this ex-
ample. Note that in Figure 1(b), s1 and s2 transmit redundant
copies of their data along both the primary and backup routes
simultaneously. However, at node q, the messages are added
together (with arithmetic done over a finite number field to
preserve message size) and transmitted over link (q, d). Thus
node d receives a, a + b, and b. In the event that any one of
these incoming messages is disrupted, d can still recover both
a and b from the remaining two (e.g. by computing (a+b)−a
to recover b). Like the dedicated protection example, there is
very little delay in recovering the message after a failure as the
redundant copies are sent at the same time as the originals.
However, we also have the benefit of the lower bandwidth
usage like we get with the shared protection example.

B. Static Network Coding

In general, the coded messages which are constructed and
transmitted from intermediate nodes along a network route are
linear combinations of the incoming messages at that node.
Koetter and Medard presented an algebraic model for network
codes which are robust against network failures, referring to
them as static network codes [11]. For a single (possibly
multicast) connection, they found that if a network coding
solution exists for a particular connection after a set of poten-
tial failure scenarios taken individually, then a static network
coding solution exists which is simultaneously robust against
each of the failure scenarios. Unfortunately, this result does
not generalize to network codes over multiple connections
like the one shown in Figure 1(b). However, network coding
approaches for special cases do exist. In a series of papers,
Kamal et al. introduced 1 + N protection in which one may
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contain network coded backup messages for N connections
[2], [3], [4].

Network coding also provides us with opportunities for
bandwidth savings that simple shared protection does not.
Suppose we add an additional source, s3, transmitting data
stream c to our example as shown in Figure 2(a). In order
to protect this connection by provisioning backup bandwidth
(say, along the route 〈s3, p, d〉), we would need a second
wavelength on link (p, d). If such a channel is not available,
then this connection would be blocked. However, if we employ
network coding like the example shown in Figure 2(b), we use
less bandwidth than needed in the shared protection example
but without the delayed failure recovery. Note that in this case,
d receives a, a+b, b+c, and c which are sufficient to recover
all of a, b, and c from any three should one of the streams be
disrupted. For example, with (a + b), (b + c), and c, we can
recover b from (b+ c)− c and a from (a+ b)− (b+ c) + c.
Note that in this case, the bare symbol b is not sent on an
uncoded channel but is nonetheless recoverable before or after
a single failure. Thus, distinguishing between primary and
backup routes may not be the best approach. For connections
sharing a common destination, such a static network code
exists whenever for any subset of the connections of size k
there exists k+ 1 link-disjoint paths between the sources and
the destination [12].

The disadvantage to these approaches in an optical network
is that coding operations must be supported at intermediate
nodes. This can be accomplished by converting the optical
signal to an electronic symbol, performing the operations using
normal electronic computations, and then converting the result
back into an optical signal for retransmission. This constant
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optical-electical-optical conversion and stopping/buffering of
the flow is undesirable, and so the use of all-optical XOR gates
for coding operations has been explored [5], [6], [7]. Using
only XOR gates, however, limits coding operations to simple
addition whereas most networking coding applications also
require at least some scalar multiplication in the computing
of a linear combination. To the best of our knowledge, our
previous work in [8] is the only architecture which has been
proposed to allow for full digital linear network coding at
the optical layer, but its hardware complexity is fairly high,
requiring O(m) optical XOR gates, TODs, and switching
components (in order to support m-bit coded symbols). In
order to make such a device more scalable, we present a low-
complexity architecture which will allow for the benefits of full
linear network coding while requiring only a small, constant
number of XORs, TODs, and switching components while
scaling up with longer delays.

III. ENABLING TECHNOLOGIES

Our proposed all-optical network coder architecture relies
on small optical switching components, TODs, and optical
XOR gates. These devices are the subject of much current
research, and in this section, we discuss of sample of recent
laboratory demonstrations for these components with a variety
of underlying technologies, keying techniques, etc. In practice,
choosing a compatible selection of components is important
to maintain a stable implementation.

A. Switching Components

Our architecture uses 1× 2 and 2× 2 all-optical switches.
Researchers have demonstrated all-optical switches that are
both fast and low power. Recently, much of this research has
focused on the use of quantum dots for switching [13], [14].

B. All-Optical XOR Logic Gates

For a review of technologies and experimental demonstra-
tions of all-optical XORs, see Ref. [15]. The application of this
technology specifically to network coding has also recently
been demonstrated with a Mach-Zehnder interferometer-based
XOR gate [6] as well as using four-wave mixing in a semi-
conductor optical amplifier [7].

C. Tunable Optical Delays

The delays in our proposed architecture must be tunable in
the sense that they can be adjusted to varying delay durations
in order to line up appropriate bits for addition by the XOR
gates. So, they must be able to adjust to all necessary data
rates, and some need to be tunable for a discrete scalar
multiple. Among the recent demonstrations of optical delays
include those based on slow light in a Raman assisted fiber
optical parametric amplifier sufficient for 10+ Gbit/s data
rates [16] and another demonstrated at 416 Gbit/s for eight
simultaneous signals using an optical-tapped delay line [17].

IV. DEVICE DESIGN

The design of our proposed all-optical network coder is
shown in Figure 3. Note that these devices could be integrated
into the fabric of the optical crossconnect or deployed in a
shared bank of coders at some nodes. Data streams could then
be routed to the coders as necessary by the crossconnect, and
the output would be routed back into the input of the cross-
connect for switching onto the appropriate outgoing channel.
If more than two channels need to be coded together, multiple
stages of coder devices need to be available in the bank, or
the signals may need to be routed back through the switch and
back into the shared bank an additional time.

The device takes as input two symbols from F2m , the finite
field of size 2m, encoded serially on the optical medium
in m bits each. We denote these two bit patterns as a =
am−1am−2 . . . a0 and b = bm−1bm−2 . . . b0 which we view
as members of the polynomial representation of F2m , e.g.,
am−1x

m−1 + am−2x
m−2 + · · ·+ a0. The coder will compute

a linear combination ca ·a+cb ·b where the coding coefficients
ca and cb are encoded in control signals in the multiplication
stage of the device. After this scalar multiplication, the two
products are added together in the addition stage, and then the
result is normalized in the third stage of the device. We will
describe each of these stages in more detail in this section.

We assume that before the two bit streams enter the coder,
their bit streams are aligned so that corresponding bits in the
m-bit symbol arrive at the same time. Additional TODs may
be necessary for this. We assume that the non-selected output
of each 1 × 2 switch carries “0” bits. Exactly how this is
accomplished depends on the modulation format. With on-off
keying, it would not require any adjustment, but with more
advanced formats, these may need to be 2×2 switches with a
constant stream of zeros (originating at the crossconnect itself)
routed to one of the two inputs on each switch.

A. Multiplication Stage

Our design restricts coding coefficients to the form 0xm−1+
0xm−2 + · · ·+ 0xk+1 + 1xk + 0xk−1 + · · ·+ 0x+ 0 so that
multiplication can be performed with a simple bit shift (the
impact of this restriction on the coding algorithms will be
discussed in Section V). This shifting of k bits for some 0 ≤
k ≤ m−1 is accomplished using TODs which delay the signal
by kτ where τ is the bit separation on the optical medium.

Note that in the diagram for the multiplication stage in
Figure 3, there are two such TODs labeled with ca and two
with cb. These are the coefficient that each of the two inputs
are multiplied by and thus are encoded on the control signals
for the TODs. The reason that there are two for each coefficient
is because the product of two degree m− 1 polynomials may
have degree 2m − 2, and so the corresponding bit pattern
takes 2m − 1 bits to represent. Thus, we need extra space
on the medium until the normalization stage, and we split
the multiplication work over two sets of TODs. The input
symbols are alternated between the two sets using two 1× 2
optical switches which are controlled with a mτ clock since
a new symbol arrives every mτ time units. Note that each set
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Fig. 3. Optical Network Coder Architecture

of TODs effectively has 2m bits of space to work with for
each symbol, so there will always be one bit of unused space
after each symbol leaves the multiplication stage which will
be important for the normalization stage.

Additionally, we could allow for one or both of the coef-
ficients to be the zero polynomial if the switches have the
ability to drop the signal.

B. Addition Stage

Addition in F2m with our polynomial representation is ac-
complished via a simple XOR of the bit patterns, so following
the multiplication stage, the two products caa and cbb go
through an all-optical XOR gate which results in the output
d = caa+ cbb. Note that d is 2m− 1 bits long.

C. Normalization Stage

Normalization in the polynomial representation of F2m is
accomplished by taking its modulus by an irreducible degree
m polynomial. Any irreducible degree m polynomial will
work for this step, and our architecture uses xm + x + 1.
The choices of m for which this is irreducible are many
and densely distributed [18], so the choice of this polynomial
does not greatly restrict the symbol sizes compatible with the
proposed device. However, using xm + x + 1 allows us to
use the Itoh-Tsijii algorithm [19] to perform normalization
very efficiently using two shifts and two additions (i.e. XORs)
as we proposed in [8]. To see this, note that since xm

mod xm + x + 1 = x + 1, for all xm+j with j ≥ 0 we
have xm+j = xj+1 + xj mod xm + x+ 1 = x+ 1. So,

d2m−2x
2m−2 + d2m−3x

2m−3 + · · ·+ dm+1x
m+1

+ dmx
m + dm−1x

m−1 + · · ·+ d0

= d2m−2(x
m−1 + xm−2) + d2m−3(x

m−2 + xm−3)

+ · · ·+ dm+1(x
2 + x) + dm(x+ 1)

+dm−1x
m−1 + dm−2x

m−2 + · · ·+ d0

=(d2m−2 + dm−1)x
m−1 + (d2m−2 + d2m−3 + dm−2)x

m−2

+ · · ·+ (dm+1 + dm + d1)x+ (dm + d0)

mod xm + x+ 1 = x+ 1.

In other words, we need to perform the following an XOR of
three bit patters as follows:

d2m−2 d2m−3 d2m−4 · · · dm+1 dm
d2m−2 d2m−3 · · · dm+2 dm+1 dm

⊕ dm−1 dm−2 dm−3 · · · d2 d1 d0
(1)

This sum is just the lower-order m bits of the 2m − 1 bit
pattern for d added to two copies of the higher-order m − 1
bits with one of the copies shifted left by one bit.

To see how this sum results from this circuit, note that since
the symbols alternate between the two sets of TODs every m
bits, after coming out of the addition stage, the higher-order
m− 1 bits (followed by a single 0 bit) from one of the XORs
is aligned with the lower-order m bits of the other XOR. The
2 × 2 switch at the beginning of the normalization stage is
controlled by a mτ clock (just like the 1× 2 switches in the
multiplication stage) so that the m−1 higher-order bits of each
addition output are switched to the bottom switch output and
the lower order m bits are switched to the top switch output.
The lower-order bits are then delayed by m so that the lower-
order and higher-order bits for each symbol are aligned. The
m − 1 higher order bits are then split into two copies with
an optical splitter and one copy is delayed by one bit before
summed together. The result is then summed with the m lower-
order bits to produce the sum shown in (1).

Note that the TODs in the normalization stage always shift a
fixed number of bits. Thus, they need only be tunable enough
to select the right bit separation for a given data stream. If a
fixed data rate were used, only a fixed length of fiber would
be necessary to accomplish the appropriate shift.

D. Complexity

This proposed architecture has low complexity, requiring
only three small switches, four optical XOR gates, a splitter,
and six TODs. This is highly scalable as the number of
switching components and the number of XORs need not be
increased for larger symbols (symbol size, of course, may need
to grow large depending on the coding algorithm, the number
of nodes in the communication group, the number of data
streams being coded together, etc.).

The only limit placed on the symbol size by this design is
from the four TODs in the multiplication stage which need to
be able to delay the signal a discrete number of bits up to one
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full symbol length. In contrast, our previous approach required
each input to be split m times, and each shifted by a different
bit length before entering an m-bit XOR gate (requiring O(m)
XOR gates, switching components, and TODs) [8].

Using a reducing polynomial other than xm + x+1 would
require additional terms in the analogous sum (1) requiring
additional XORs and more complicated switching to line up
the bits. And, our normalization stage is undoubtedly simpler
than basing it on a more naive approach like the long division
algorithm with multiple stages of shifting and XORing.

V. CODING ALGORITHM ADJUSTMENTS

Coding algorithms normally select the coefficients like ca
and cb without restriction from symbols in the entire field
F2m . Thus, limiting coefficients to symbols represented with
exactly one “1” bit in the polynomial representation requires
alterations to the network coding algorithms. However, we
can show that network codes adhering to this restriction exist
following the same approaches used for unrestricted network
coding (as in e.g. [20], [21]), but usually needing a larger field.

To see this, consider a coding scheme in which a destination
node receives coded symbols from r source processes on r
or more incoming channels. The coding coefficients can be
propagated through the network so that on each incoming
channel, we can set up a linear equation in r variables. If
we can solve these equations simultaneously, then we have
recovered the original messages. The equations can be written
in a matrix form, and if the coding coefficients were selected in
such a way that the determinant of the matrix is nonzero, then
a solution can be found. If we write the entries of the matrix
in such a way that the coding coefficients are indeterminants,
then the determinant of the matrix can be expressed as
a polynomial with the indeterminant coding coefficients as
variables. If the polynomial is nonzero for some selection of
coding coefficients, then that assignment corresponds to a valid
network code. Denoting t as the maximum degree of a variable
in the polynomial (which is limited depending on the traffic
scenario, e.g. t is less than the number of destinations for
a single multicast), note that the polynomial has at most t
roots for each variable. Thus, we choose coding coefficients
from F2m such that m > t which gives us m different
symbols with exactly one “1” bit, not all of which can then be
roots. Therefore, there must exist a selection of symbols for
the originally indeterminant coding coefficients which give a
nonzero result yielding a valid network code.

Deterministic or random network coding algorithms like
those in [20], [21] can then be applied under the restricted
coefficient selection criteria to get a valid code. E.g., a random
coding scheme for a single multicast would be successful with
probability (1 − t

2m )η (where η is the number of channels
assigned random coefficients) [21], and under our restriction,
the probability would be (1 − t

m )η . Thus, our device allows
for codes with the same success probabilities by using a much
larger m. But given that m only impacts the coder architecture
in the length of the delays, this is a reasonable tradeoff.

VI. CONCLUSION

We have proposed an all-optical network coder which scales
well, requiring only an increase in the length of delays for
larger symbol sizes. We also showed that network coding
algorithms can be adjusted to accommodate the restrictions
on coding coefficients. When deployed in an optical network,
possibly through a bank of shared coders at various network
cross-connects, powerful digital network coding capabilities
can then be provided at the optical layer.
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