The Effect of Violent Videogames on Aggression

Kaila Swain, Olga Lazareva, and Martin A. Acerbo (Department of Psychology, Drake University)

Background
- Much research suggests that exposure to videogame violence increases physiological and self-report measures of aggression (e.g., Eron & Dill, 1998).
- It is not clear whether this increase is due to the exposure to violence per se or to other variables.
- In addition, previous research explored computer-based or X-box/PlayStation games.
- Flash-based online games are more readily available and are often less elaborate.

Experiment 1: Game selection

<table>
<thead>
<tr>
<th>Violent game: Highway</th>
<th>Mildly violent game: Pursuit 2</th>
<th>Non-violent game: Tetris</th>
</tr>
</thead>
<tbody>
<tr>
<td>First-person shooter game with animate targets and some gore</td>
<td>Third-person shooter game with inanimate targets and no gore</td>
<td>Puzzles only</td>
</tr>
<tr>
<td>Moderately paced</td>
<td>Started at an advanced level to control for pace and difficulty</td>
<td>No self-paced</td>
</tr>
</tbody>
</table>

Participants and procedure.
- 8 college students
- Played each game for 10 min (order of game presentation randomized across participants)
- Completed Game Complexity Questionnaire for each game
- Did six questions (rating scale from 1 to 5):
 - Overall, how difficult was it to learn the game?
 - Was it difficult to learn how to use controls for the game?
 - How quickly did you learn controls for the game?
 - Did you find the game so difficult that you became frustrated?
 - How would you rate the pace of the game?
 - How hard were you trying to win the game?
- Make sure that the most violent game is not the most fast-paced/difficult/frustrating game.
- In addition, recorded frequency of videogame playing for each participant.

Experiment 1: Results

<table>
<thead>
<tr>
<th>Question 1: Overall, how difficult was it to learn the game?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non-violent game rated significantly less difficult than violent game</td>
</tr>
<tr>
<td>Mildly violent game rated significantly less difficult than violent game</td>
</tr>
<tr>
<td>No difference between violent and mild violent game</td>
</tr>
<tr>
<td>No difference between violent and non-violent game</td>
</tr>
</tbody>
</table>

| Question 2: Mildly violent game is rated significantly more difficult than other games |
| Question 3: Mildly violent game is rated significantly more difficult than other games |
| Question 4: Mildly violent game is rated as more fast-paced than mildly violent game |
| Question 5: Non-violent game is rated as more fast-paced than mildly violent game |
| Question 6: No difference between non-violent and violent game |

Summary:
The ratings of frustration produce an opposite order: non-violent game is the most frustrating, followed by mildly violent game and violent game.

Experiment 2: Effect of game-playing on aggression

Participants and procedure.
- 18 college students
- Random matched assignment by gender
- Told that the goal of the study is to investigate how frustrating it is to learn a new videogame
- Three baseline measures prior to game
- Saliva sample to measure cortisol, Word Completion Task, State Hostility Scale
- Played assigned game for 30 min
- Two measures:
 - Word Completion Task
 - State Hostility Scale

Conclusions
- None of the three measures followed the increase in violence of the game.
- Word Completion Task produced increase in aggressive completions after playing non-violent game.
- State Hostility Scale produced increased scores after playing any game.
- Concentration of cortisol increased after playing mildly violent game, but decreased after playing violent game.
- This suggests that other dimensions of the game (e.g., level of frustration or difficulty of learning controls) may affect these measures more than the level of violence.
- This is an important finding as the increase in these measures is commonly interpreted as an increase in aggression associated with exposure to violence.
- Next step: collecting more data to confirm our findings.

Acknowledgments
This research was supported by the Psychology Department Student Research Award to Kaila Swain. We thank all members of CoPs research team (Kaitlin Kardasz, Scott Gaudian, Erin Gulliford, and Mindy Plate) for their help with running experiments and Dr. Mark Bush for allowing us to use his lab to determine cortisol levels.

References