AN AEROSPACE SCIENCE COURSE WITH SPECIAL EMPHASIS
ON VOCATIONAL INFORMATION FOR DEXFIELD COMMUNITY
HIGH SCHOOL, REDFIELD, IOWA

A Field Report
 Presented to
 The Graduate Division
 Drake University

In Partial Fulfillment
of the Requirements for the Degree
Master of Science in Education

by
Martin L. Fillers
June 1968
AN AEROSPACE SCIENCE COURSE WITH SPECIAL EMPHASIS
ON VOCATIONAL INFORMATION FOR DEXFIELD COMMUNITY
HIGH SCHOOL, REDFIELD, IOWA

by

Martin L. Fillers

Approved by Committee:

[Signatures]

Earle L. Canfield
Dean of the Graduate Division
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>CHAPTER</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>I. INTRODUCTION</td>
<td></td>
</tr>
<tr>
<td>The Problem</td>
<td>2</td>
</tr>
<tr>
<td>Statement of the problem</td>
<td>2</td>
</tr>
<tr>
<td>Importance of the study</td>
<td>2</td>
</tr>
<tr>
<td>Definition of Terms Used</td>
<td>4</td>
</tr>
<tr>
<td>Aerospace education</td>
<td>4</td>
</tr>
<tr>
<td>Aerospace industries</td>
<td>4</td>
</tr>
<tr>
<td>Aerospace Industries Association, Inc.</td>
<td>5</td>
</tr>
<tr>
<td>Procedure</td>
<td>5</td>
</tr>
<tr>
<td>II. HISTORICAL BACKGROUND OF AEROSPACE EDUCATION</td>
<td>6</td>
</tr>
<tr>
<td>III. REVIEW OF THE LITERATURE</td>
<td>10</td>
</tr>
<tr>
<td>Guidance in the Space Age</td>
<td>10</td>
</tr>
<tr>
<td>Curriculum in the Space Age</td>
<td>18</td>
</tr>
<tr>
<td>Space Age Occupations</td>
<td>22</td>
</tr>
<tr>
<td>The electronic industry</td>
<td>25</td>
</tr>
<tr>
<td>The electronic computer industry</td>
<td>26</td>
</tr>
<tr>
<td>Air transportation industry</td>
<td>27</td>
</tr>
<tr>
<td>General aviation</td>
<td>29</td>
</tr>
<tr>
<td>IV. AEROSPACE SCIENCE-COURSE OUTLINE</td>
<td>33</td>
</tr>
</tbody>
</table>

(Course outline pages numbered independently, see outline table of contents.)
<table>
<thead>
<tr>
<th>CHAPTER</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>V. SUMMARY, CONCLUSIONS, AND RECOMMENDATIONS</td>
<td>34</td>
</tr>
<tr>
<td>Summary</td>
<td>35</td>
</tr>
<tr>
<td>Conclusions</td>
<td>39</td>
</tr>
<tr>
<td>Recommendations</td>
<td>42</td>
</tr>
<tr>
<td>BIBLIOGRAPHY</td>
<td>43</td>
</tr>
</tbody>
</table>
CHAPTER I

INTRODUCTION

Historically man's recorded time has been titled according to significant inventions or discoveries of the era, i.e.: Stone Age, Iron Age, Bronze Age, etcetera. October 4, 1957, the world was ushered into the Space Age as the U.S.S.R. launched Sputnik, the first man-made satellite to go into orbit. Man's dream of space travel took a step forward and became feasible reality. But, of more significant importance was the added impetus Sputnik gave to education in the United States. Addition and change of curriculum as well as expansion of pupil personnel services, particularly guidance and counseling, in the secondary schools was very evident after the National Defense Education Act of 1958 came into law.

"Curriculum is not a division of the guidance service, but, the two are closely related because of the similarity of goals and philosophy."¹ It was the growing need for Space Age information and Space Age occupational information in the schools that encouraged the development of a guidance oriented Aerospace Science course.

I. THE PROBLEM

Statement of the problem. It was the purpose of this study to develop a science course of such scope and content that a curiosity of aerospace sciences would be initiated and would also inform the student of career potentials in the aerospace industries for the Dexfield Community High School, Redfield, Iowa.

Importance of the study. It was learned from a follow-up study of Dexfield Community High School graduates, completed in 1963, that slightly over 40 per cent continued their education in either college or technical school. Of the graduates who attended college around 50 per cent attended Iowa State University with nearly three-fourths of this group enrolled in the Engineering Division. Of the graduates who attended technical schools over 80 per cent were enrolled in electronic training.

Following World War II some of America's technical and engineering know-how was used to develop missile systems and rocketry techniques which were to precede space explorations. Since 1957 the emphasis on aerospace equipment and knowledge is public record. A group of sixty-one industries joined together to form AIA, Aerospace Industries Association, Inc. These industries make up the major contractors and suppliers of equipment and technical knowledge who were
to develop the space program in the United States. (It might be well to mention that membership in the AIA is not a criterion for aerospace industry and activity in general. AIA and aerospace industry will be defined later.) By the end of fiscal year 1966 the AIA members were to represent the largest non-agriculture industry in total payroll and employment.¹ Total employment and payroll of the AIA members was almost equal to that of automobiles and steel combined.² "Of the total personnel in AIA firms less than five per cent were classified as non-skilled or those not requiring technical or additional training to hold their jobs."³

General comments taken from the returned follow-up questionnaires indicated many graduates hoped the Dexfield curriculum could be expanded to include more elective courses that would depart from traditional offerings, particularly in the science area. The questionnaires also indicated many graduates were in the aerospace industries or the undergraduates were thinking seriously of obtaining employment in aerospace or related industry.

In this study the information from the aforementioned

²Ibid.
³Ibid.
follow-up study was used to aid the writer in his development of a course of study to fill a need in the Dexfield Community High School's curriculum.

II. DEFINITION OF TERMS USED

Aerospace education. Aerospace education is "devoted to the development of the knowledge, skills, and attitudes necessary for full appreciation of the significance of aerospace affairs, it seeks to awaken the American public to the challenge of intelligent living in an age characterized by spectacular scientific and rapid cultural change."

Aerospace industries. Categorically there are three basic areas in aerospace industries: (1) manufacturing; (2) air transport; and (3) general aviation. Specifically, manufacturing includes all research, development, fabrication, assembly, sales, major overhaul, maintenance, and modification relating to airplanes and missiles. Air transport includes domestic scheduled airlines, trunk airlines, local service airlines, non-scheduled airlines, and all-cargo airlines. General aviation includes business, commercial, instructional, and personal flying.

1Aerospace Education (Civil Air Patrol: Ellington AFB, Texas, 1966).
Aerospace Industries Association, Inc. Aerospace Industries Association, Inc. is an association of sixty-one American industries engaged in aerospace manufacturing.

III. PROCEDURE

The procedure used to complete this study was library research on guidance and curriculum, correspondence and/or personal contact with aerospace industries and AIA members to learn of their personnel needs, and correspondence and/or personal contact with those organizations and individuals interested in and concerned with aerospace education.
CHAPTER II

HISTORICAL BACKGROUND OF AEROSPACE EDUCATION

In a sense aerospace education began with the first attempts of man to fly. However, modern aerospace education began, formally, with the organization of the National Aviation Council in 1947 with its headquarters in Washington, D.C. This organization consisted of professional educators and interested lay people. The purpose of this council was to promote aviation education and knowledge in American schools.

America had emerged from World War II as a major world power. Aviation contributed much to building this position. The airplane had proved its worth and value as a war machine and was then looked upon with great expectations for its potential peace time use. The rationale was that young people knew about aviation and airplanes thus teachers should know something about these subjects too. It was also a part of the rationale, "... our American education has a definite responsibility in teaching the implication of the air age--in helping students to understand the social significance of the airplane, and to train our youth to meet social, economic, and political complexities of the age in which we live."¹

¹Program For The Air Age (The Alexis I. duPont Special School District: Wilmington, Delaware, 1949), p. 3.
The National Aviation Education Council evolved into the National Aerospace Education Council in 1962 with the only change in its purpose being the inclusion of space information. At present many states have active Aerospace Education Councils and some states have an Aerospace or Air Age consultant in their state departments of education. Each state's council and purpose is basically the same as the national organization. Their organization generally consists of educators at all levels of instruction, primary school through college, and lay people. Their method of encouraging aerospace information inclusion in the schools may differ from the workshop approach to encouragement of aerospace units in regular teaching.

Air age, or aerospace, education in public schools has grown steadily since the formation of the NAEC in 1947. The A. I. duPont Special School District of Wilmington, Delaware was one of the pioneers in this area. A "Program For The Air Age" was developed and added to the entire curriculum of grades K through 12. The program was inaugurated in 1949 and still remains an integral part of the school's curriculum with periodic up-dating and the inclusion of space topics. Other programs have been established in Hinkley, Colorado, Atlanta, Georgia, Chanute, Kansas, Tucson, Arizona, and many California schools, too numerous to mention. Aviation training is a part of many state universities'
regular course offerings. Purdue University, University of Illinois, Ohio State University, Southern California University, and Central Washington State College are a few of these schools. A bachelor degree program with a major in professional piloting was established at Purdue University. Pilot training in high school became a part of the aerospace activities in Atlanta, Georgia and Chanute, Kansas. Onalaska High School in Wisconsin received a government grant under Title III of Public Law 89-10 to set up an experimental aviation program for the school year 1966-67. This program was to include flight training as well as an orientation to vocations in the aerospace industries.

Many teachers have included aerospace units with their regular subject matter. The Aerospace Education Council of Iowa annually awards the "Willard Coombs Award" to the Iowa classroom teacher who has contributed significantly to furthering aerospace education in the classroom.

Aerospace education workshops are held in over 200 colleges each year to keep teachers informed of developments in aerospace technology and to educate the uninitiated. Aerospace workshops have become commonplace for county teacher institutes and in-service teacher training.

Many AIA members have established education departments for the sole purpose of developing and disseminating aerospace information to schools and interested lay groups.
Cessna and Beech Aircraft Companies and United and T.W.A. Airlines have been especially active in this endeavor. The Sanderson and Jeppeson firms have been very progressive in developing educational media for aviation programs. The Civil Air Patrol has been quite active in both of the aforementioned areas as well as assisting at workshops in colleges and in school programs.

The inclusion and implementation of aerospace and aviation programs in the schools has been a boon. Pertaining to this statement Saden has said, "... the schools who have aerospace courses do not have difficulty in challenging students."

1Samuel J. Saden, "Curricularizing Space Age Education," Education (February, 1965), 35.
CHAPTER III

REVIEW OF THE LITERATURE

In this chapter, the literature in the areas of guidance, curriculum, and occupations in the Space Age have been reviewed in order that the writer might better point out the need for a guidance oriented aerospace science course.

I. GUIDANCE IN THE SPACE AGE

Although guidance was not new to education the guidance service did receive a welcome boost from Sputnik when it was launched in October, 1957. The National Defense Education Act of 1958 included provisions to expand existing services and much of the cost, including large portions of the salaries of counselors, would be borne by the government. Schools which felt themselves too small to avail themselves of the guidance services now found it was to their advantage, financially and educationally, to establish guidance facilities and services within their programs. Once established the problem became the scope and extent of utilization of guidance services in the school.

To utilize guidance principles and techniques of the 20's and 30's in the Space Age would have been as much a disservice to the school population and community as it
would have been to not include any knowledge since 1945 in the curriculum. The world was moving faster, thanks to the Space Age, and school children were staying in step. The children of the Space Age may not be any smarter than their parents or grandparents but they knew about more things—mainly due to communication sophistication and development.

Guidance services were coming of age in the Space Age and the services were sorely needed as the bulk of educational information was increased to the point that only an interested trained specialist could expect to keep up with new and changing developments.

The great clamor for guidance services was born more from public demand than from within the educational community. Manpower reports of the 50's and early 60's such as:

A Policy for Skilled Manpower, by the National Manpower Council.
The President's Report on Education Beyond the High School
The White House Conference of Children and Youth in 1960.
The Manpower Development and Training Act.
The President's Report on the Status of Women.
The Portrait of the Unemployed.
The One-third of a Nation, The Report on Draft Rejectees.
The Vocational Educational Act of 1963.¹

The calls for these reports came at the national level and included lay people as well as professional educators. "The reports did much to bring the cause and need for guidance services to the public and it is from the public any educational program receives its support."¹

The guidance program itself had to be ever mindful of the individual and use all tools at hand to aid in his development. "In aerospace industries the term 'spin-off' is used—information compiled, useful, but seldom if ever used."² In guidance we all too often have "spin-off" as information is compiled, neatly filed, and forgotten, its significance for individualization and improvement of an individual overlooked. "Often too, we are somewhat hesitant, or slow, to adopt new practices that have proven successful in other schools."³ "Perhaps another aerospace industry term could be used here—the 'N.I.H.' factor—useful, but not-invented-here."⁴ The "N.I.H." factor deters adoption of programs which might facilitate innovation in education and guidance. Guidance, to be effective in the Space Age, will have to do away with "spin-off" and "N.I.H." and, "... will need to consider several dimensions."⁵

¹Ibid. ²Ibid., p. 44. ³Ibid. ⁴Ibid. ⁵Ibid., p. 39.
Seldom today will youth see their parents at work. "A dimension of the guidance service is to realize that youth do not have the same concepts of work or occupations that were had 10 or 15 years ago."1 And for good reasons. There are thousands of new kinds and types of occupations open to them now that were not heard of a few years ago. The guidance service must move out actively to bring an awareness of this shifting world of work to young people. This may necessitate the counselor becoming involved in more outside-the-school activities such as hobby and career clubs, youth groups, etc.

The guidance service cannot overlook the importance of hobbies and career clubs. The emphasis on pure science and mathematics in the late 50's and early 60's led to a strong academic emphasis on the theoretical side of these subjects but not too much on the practical application of the theory.

The Martin Corporation of Baltimore, Maryland noted a characteristic of their engineering people hired in middle 60's—a characteristic in which longer times were needed for on-the-job orientation and proficiency in comparison to engineers hired in the 50's and early 60's. It was a slowness to apply theory to practical application as little, if any, experience in practical application had been obtained. The study revealed the earlier groups of engineers had been model airplane and boat builders, "Ham" radio operators, or auto and machinery tinkers. They had managed to build or

1 Ibid., p. 41.
maintain their hobbies without expensive, sophisticated, and elaborate equipment. Problems in their engineering work were often solved thanks to this background of practical knowledge. The newer engineers, while striving for academic excellence had not had, or taken, time for a hobby and thus were at a disadvantage for periods up to two years when they went on the job.¹

The space program of the Space Age is practical and is a part of the real world; thus hobbies and career clubs that may be allied with a vocational choice should be encouraged and not downgraded.

Another dimension the guidance service must consider is that even in the technical Space Age we are still dealing with people. "If the schooling and counseling is confined to technical knowledge the individual may be ill prepared to deal with people."² The social sciences should not be overlooked. "Also, if technical knowledge and specialities are overemphasized in the classroom we may create a generation of cybertrons."³ (Cybertron from cybernetics—comparative study of automatic control systems of the nerves, brain, and corresponding electronic and mechano-electrical systems and devices.) When working with cybernetics, Ashby⁴ worked out a self-adjusting device called a homeostat. He compared the function of the homeostat in cybernetics to the

¹Ibid., p. 28. ²Ibid., p. 41. ³Ibid., p. 42.

human capability of accommodation of a stimulus and coming to equilibrium even though the entire stimulus might not be understood. The unaccommodated portion would be "filed" in the memory banks of the brain for later use. Some homeostats were so designed that they would never find equilibrium. McDaniels drew the analogy between classroom overcontrol and non self-adjusting homeostats. He said, "... if we get individuals so attuned in technical knowledge and speciality by overcontrolling them in the classroom that they will try to attain equilibrium at any cost, without accommodation, we may create a homeostatic society incapable of self-adjustment." The implication of this to civilization was quite important. "Our civilization has survived because a balance can be quickly obtained and without frustration if the individual is incapable of accommodating an entire stimulus." "Perhaps it would be best to allow students to experience some failures, to come to equilibrium by themselves rather than be forced into it, and continue to be a self-adjusting society." Saden commented,

... that the implantation of proper attitudes, appreciation of ideals for the object ideology in the lessons of the subject matter taught were of prime interest to education during the "Wheel Age."
"In the Space Age the emphasis is on aptitudes as it gives the individual distinguishing capabilities."¹ In the Space Age a combination of aptitudes may be needed to adapt to society and enable an individual to realize life goals.

Guidance in the Space Age must be aware of the rapid change and growth of technology in American industry, particularly in those highly scientific occupations associated with the aerospace industries. "The number of technicians increased 643 per cent from 1940 to 1960 and from 1960 to 1964 the increase was 144 per cent and the need was still considered critical."² This was to reflect a greater increase than any other occupation group. "This growing need for professionally trained workers with a relatively stable percentage of potential applicants raises another dimension to consider."³ "Can a counselor permit freedom of choice among his counselees when glowing discrepancies in our labor force exists and the talent and the aptitudes are evident."⁴ This dimension may infringe on the counselor's counseling frame of reference. But,

. . . it has been suggested that exploratory work experience programs and increased activity in group and individual counseling programs with parents and students to promote understanding and realistic educational and career planning may aid the counselor

¹Ibid. ²NASA, op. cit., p. 42. ³Ibid. ⁴NASA, op. cit., p. 43.
in maintaining a consistent frame of reference and at the same time implement the guidance program to provide as much information and activity for the counselee to use in making his decision.

Another factor in the guidance planning of, and for, an individual was that new knowledge, new developments, and changing conditions often called for changing plans. Pluimer, in his many talks to educators and lay groups, was to point out the magnitude of amassed knowledge. "Knowledge has doubled several times since man's first records of recorded time and history, the most recent doubling was in the past 15 years and the next doubling will occur by 1975." It was very easy to see why the individual must be able to adjust and accommodate readily to new information. "The ability to adjust and accommodate is enhanced greatly by a good fundamental education and a continuing desire to learn."

A final dimension in Space Age guidance was a reconfirmation of the principle that teachers must be involved in the guidance program. "The guidance environment works best when the pupil grows in self-understanding, makes plans, and progresses toward well chosen goals." This was true in the classroom as well as in the counselor's office.

1 Ibid.
2 Harold Pluimer, "Frontiers of Education In The Space Age" (Dallas County Teacher's Institute: Adel, Iowa, Sept., 1947).
3 NASA, op. cit. p. 44.
4 Ibid.
Space Age dimensions of guidance were not really new dimensions but modification of old to meet changing times. The guidance program was basically committed to aiding the individual and quality education. Quality education may involve individualized education and improvement of instruction and curriculum which was to provide for a more complete development and uniqueness of each individual.

II. CURRICULUM IN THE SPACE AGE

The Space Age pointed up the need for schools to look at their course offerings and consider the needs of the students in contemporary society and projected society rather than in the light of traditionalism. Kelley stated, "... that courses of study had remained traditional more for the welfare and security of the parents than for any logical educational reason."¹ "Conant and Rickover made inferences on school traditionalism in their comments of the late 50's which resulted in schools adopting changes that have shown profound improvement to sustain better holding power and extent of offerings to challenge those of various capacities and interests."² (In the preceding commentary the word curriculum was purposely omitted. Oliver

¹Kelley, op. cit., p. 38.
²Saden, op. cit., p. 492.
infers curriculum does not have a definition as curriculum can only have meaning when used in proper context with a school, a department, or an individual because curriculum is individualized for areas such as a school, a department, or an individual.)

"In a sense curriculum has always existed, even without schools, the problem was not to create it but to keep it current." This was true in the past and much more applicable now, "... as startling expansion of knowledge causes curriculum obsolescence at a rapid rate." This currency requirement in educational offerings is one which the counselor must give his attention as well as teachers, administrators, and communities. Keeping course offerings and curriculum up to date is first of all a problem of being informed of current developments and secondly knowing what needs to be done so changes can be accomplished at the time needed and not in wholesale lots after great time intervals. In a world-society that is rapidly changing this was no small task. Dulles stated, "... that probably in the late years of this century, we would have more change in a 5-year period than any other period in history."

1 Oliver, op. cit., p. 2.
2 Ibid., p. 1
3 Ibid.
4 NASA, op. cit., p. 6.
5 Ibid.
schools should be better prepared to educate and inform a young person so as to be able to adapt to an adult society with rapidly changing technologies?

A point not to be overlooked when considering curriculum change and/or modification was brought out by Hahn:

We no longer have a time lag between acquisition of new knowledge—the discovery of scientific principles for example—and its application. There was 50 years between the discovery of the electromagnetic induction principle and the invention of the generator. Sufficient time to school and train technicians. There was 30 years between the discovery of electron emission in a vacuum to the growth of the electronic industry and 10 years from the discovery of the neutron to nuclear reactors. There was less than three years between the discovery of semiconducting properties and transistors. Time lag for educational purposes no longer exists.¹

The Civil Air Patrol related seven modern curriculum trends to Space Age education as a rationale for Aerospace Education. They were:

1. To recognize interest, purpose, and experience as factors in child growth and development. Through aerospace education, spontaneous pupil interest in aircraft, rockets, missiles, and space vehicles may be used to lead pupils into many different exploratory enterprises.

2. To provide students with guided experiences which will help them understand the complex age in which they live and to assume responsibility for the improvement of life's conditions. A curriculum responsible to the challenges of present-day living must seek to develop understandings of life in the Aerospace Age so that students acquire the knowledge, skills, and attitudes necessary for effective, democratic citizenship. The inclusion

of aerospace education in the curriculum offers a unique opportunity to accomplish this.

3. To realize the school's responsibility to provide career guidance and education for vocational competence. The aerospace industries, governmental agencies, air transport industries, military services, general aviation, and industries expanding because of aerospace developments require the services of several million trained people. One of the specific objectives of aerospace education is to stimulate awareness of available aerospace careers and to develop talents and skills for success in those careers.

4. An integrated curriculum, organized around a major interest employed as a frame of reference. Through the enrichment approach standard course offerings are supplemented with pertinent aspects of the aerospace sciences which are major factors of many general study units, such as "Living and Working Together"; "Communicating Ideas"; "Discovering Our World of Science"; "Transporting Goods and Services"; and "Exploring the Universe."

5. The use of community resources as aids to learning. Aerospace education provides an opportunity to supplement classroom instruction with popular, educational experiences such as trips to local airports, air bases, aerospace manufacturing firms, etc. In addition, local, state, and national aviation agencies, aerospace industries, and other interested organizations provide major aerospace education resources.

6. The acceptance of in-service teacher education as a permanent and integral aspect of curriculum improvement. A study of the effects of aerospace progress upon modern life must not be neglected by teachers who desire to do a competent job of guiding today's pupils or students. A good way to complete such a study is by participation in aerospace education projects either during summer vacation or after class hours during the school year.

7. Extend the services of organized education to the adults of the community. Aviation and astronautics are attractive and important areas of adult education. Expanding career opportunities in the aerospace industries stimulate many adults to seek training in technical aerospace vocations; the broad effects of aerospace progress stimulates others to study about the influences of aviation
and astronautics. Air travel courses and courses in aviation for farmers are common among adult offerings.¹

Oliver touched on some of these points; new knowledge, community needs, and changing society not only as a rationale for change but also to serve as responsible parties in aiding and effecting change.² Oliver also felt that curriculum improvement was a cooperative effort and received the best support when changes were effected this way.³

The Aerospace Science course for Dexfield Community High School was developed through the cooperative plan, cognizant of the modern trends in curriculum, and to serve a need in the school and community.

III. SPACE AGE OCCUPATIONS

The high level of enthusiasm by American youth in the many aerospace related fields of interest is matched by the growing need for well educated and trained personnel to sustain and carry forward the aerospace programs now under development. The career opportunities are almost limitless now that all of the immediate and potential needs of space exploration have been added to those of aviation to form the social, scientific and technological complex of aerospace.⁴

¹Civil Air Patrol, loc. cit.
²Oliver, op. cit., pp. 32-35. ³Ibid., p. 219.
America's entry into the Space Age caused rapid growth in the aircraft, missile, and spacecraft field. The rate of growth was to slow in the later 60's--due primarily to the cut-back of federal spending in support of the space program--however, activity in the other areas of the aerospace industries was to remain strong and total employment and payroll of the aerospace industries still larger than any other non-agriculture group. The nature and activity of the aerospace industries created a disproportionate demand for technicians.

Because this industry's products are complex and changing, the majority of job openings will be for workers having a college education or a specialized skill. Scientists, engineers, and technicians represent a much larger proportion of total employment in the aerospace industry than in most manufacturing industries, and will probably account for an even higher proportion during the 1965 to 1975 decade. In addition to professional and technical workers, increases are also expected in the employment of skilled workers, such as tool and die makers, skilled assemblers and inspectors, welders, and various types of mechanics. Employment of semi skilled and unskilled workers, on the other hand, is not expected to grow and may even decline.¹

Large corporate industry was considered the backbone of aerospace production but, "many thousands of subcontractors participate in the production of parts and subassemblies

that go into aircraft, missiles, and spacecraft.1

Occupational needs vary among the aerospace industries depending on the work being done.

Some of the more important jobs in aerospace manufacturing are listed under three major categories; professional and technical occupations; administrative, clerical, and related occupations; and plant occupations.2

General descriptions of jobs in the areas are:

Professional and Technical Occupations--research, design, experimentation, and testing. Primarily college graduates with engineering degrees.

Administrative, Clerical, and Related Occupations--Comparable to managerial and administrative positions in other industries, except they are generally more closely related and oriented to engineering because of research and development in the aerospace field. Primarily college graduates and/or business school graduates.

Plant Occupations--Classified in the following groups: sheet metal work; machining and tool fabrication; other metal processing; assembly and installation; inspecting and testing; pre-flight checkout; and materials handling, maintenance, and custodial. With the exception of the last mentioned jobs this group requires technical school and/or on-the-job experience to become a skilled worker. This group constitutes about one-half of all workers in the aerospace industries.3

Employment in the aerospace industry was expected to maintain its position among American industries and show little significant change during the 1965 to 1975 decade.

\begin{footnotes}
\item[2]\textit{Ibid.}, p. 574.
\item[3]\textit{Ibid.}, pp. 574-578.
\end{footnotes}
"There would still be tens of thousands of job opportunities annually in this large field."\(^1\) In addition, it was estimated 20,000 to 30,000 job openings would be available due to retirements and deaths during 1965-1975.\(^2\)

Products from the aerospace industries were developed, primarily, to assure national security and to advance America's goals in the conquest of space. But, the knowledge and techniques learned in developing security and space products have had a beneficial "spin-off" as much of this information and technique was readily adaptable to, and for, civilian consumer goods.

Among the aerospace industries whose knowledge, technique, and services were most readily available to, and for, the civilian consumer were the: Electronic; Data Processing; Air Transport; and General Aviation industries. Collectively these industries employ more than one-half of all the employees in the aerospace industries. Individually, each of these industry's growth patterns was rapid in the past two decades and projected figures indicate that change and growth will continue to be significant however, not as rapid.

The electronic industry. Prior to World War II this

\(^2\)Ibid.
industry was engaged mainly in producing radio transmitters and receivers. Their image has changed considerably.

Following World War II the discovery of semiconductors and other devices that control or direct the flow of electrons led to many unique and sophisticated devices which was to have many applications. The entrance of electronics into navigation and production control (computers) was to create a greater demand for these products as well as increased use of electronic components in consumer goods for the home. Introduction of semiconductors, solid state, and miniaturization into electronics was to create a need for increased training and skill for those persons involved in testing and maintaining the complex machinery and equipment.

Employment forecasts in the Electronic industry for the next decade is expected to show increases for administration, engineering, and technical personnel and relatively stable demands for semi skilled and non skilled positions. There is also expected an increase for the need of mathematicians as electronic manufacturing becomes more involved with computer design and construction.¹

The electronic computer industry (Data Processing).

An offshoot of the electronic industry was the electronic computer industry which was sometimes called "A Young Giant."²

Barely 20 years old, this new industry has grown rapidly. The first general purpose computer designed for business data processing and scientific use went into operation in 1948. By 1966 it was estimated 4,500 computers were in use; by the close of 1966, a meteoric rise to more than 38,000 had occurred and 22,000 more machines were reported to be on order. It is expected that computers in use in business, industry, and science would increase to 85,000 by 1975.

Manpower requirements are unusual inasmuch as so

much powerful equipment can be assembled by a relatively small work force but, the increase in the machines needed would reflect a substantial increase in the work force. The distribution of occupations are equally divided among white-collar and blue-collar which is a unique situation.

General education requirements for both classifications are also higher than usual as more than a high school education is needed for most jobs. Approximately one-fourth of the workers in computer manufacturing are involved in research and design which required extensive education and training. The post-high school training for technicians is generally two years with periodic up-dating on the job to keep abreast of new developments.

Although technological improvement continued to increase the output per worker, the growing demand for computers will cause expanding employment in the Electronic Computer Industry.1

Air transportation industry. The success and growth of the air transportation industry was best shown by the continuing increase of passengers carried and the decrease in cost per passenger mile during the period 1956-1966 and continuation of these trends forecasted for 1966-1976.2

"Passenger miles during the decade 1965 to 1975 are expected to double."3 The introduction of high density seating, high speed jet airliners was to cut travel time tremendously and make it possible for business men to make,

3 Ibid., p. 2.
and keep, widespread appointments in the same week or even the same day. "Family travel plans"\(^1\) to vacation sites were to encourage the general public to utilize air travel and make more time available for recreation and leisure during vacations or visits.

The growth of trunk air lines (major coast-to-coast and border-to-border lines) precipitated growth of local-service airlines and connecting airlines. Local-service lines provide air transportation service to population centers not served by trunk lines and connect with the trunk lines at major points within the geographical boundaries of their operational scope. Ozark Airlines servicing towns such as Iowa City, Ottumwa, Cedar Rapids, and connecting with trunk lines in Des Moines is an example of a local-service line. Ozark also services several states surrounding Iowa. Connecting airlines serve less populated areas, generally areas with one or more small industries, and connect to cities served by local or trunk lines. Commuter Airlines of Sioux City, Iowa, is an example of a connecting line serving Iowa.

Boltz, in his comments before a Senate Committee, stated the following projections for air transport growth:

1. The U. S. Civil air carrier fleet is expected to grow from 2,200 aircraft in 1965 to about 3,200

\(^1\)Ibid.
aircraft in 1980. The airlines now have on order about 90 stretched jets, about 100 high-capacity 747's, some 185 SST's, and more than 500 other jets. These represent investments of some $12 billion—and this probably is just the beginning.

2. Revenue passenger-miles of operation have been projected from 65 billion passenger-miles in 1965 to 315 billion passenger-miles in 1980.

3. The revenue ton-miles of operation are expected to grow from approximately 3 billion ton-miles in 1965 to about 38 billion ton-miles in 1980. This includes only cargo carried by cargo aircraft.

4. In 1965 there were 22,972 air carrier pilots; the projected need is for 43,665 by the end of 1980. Traditionally, the applicant to acceptance ratio for pilots has been 10 to 1, or greater, in the air carrier industry. Thus approximately 430,000 pilots with the present-normal training will be needed if the traditional ratio remains constant or, the quality of our present pilot training programs must be improved to meet future needs.

5. The air carrier industry employed 43,667 mechanics in 1965; by the end of 1980 60,224 will be needed.

6. The need is a current one, as well as one projected in the future. The Air Transportation Association has estimated 4,300 new pilots and 6,800 new mechanics will be hired during 1967.

7. Total airline payrolls increased from $1.7 billion in 1965 to $1.9 billion in 1966. The average airline salary was $7,910 in 1966.

General aviation. Following World War II the expected boom in general aviation occurred but was short-lived. It was hoped that airmen trained in the service would continue flying and the "G.I. Bill" provision to pay for flight training

would encourage other service discharges to take to flying for either business or pleasure. In 1947 there were over 1,500 flight schools in the United States; by 1950 there were less than half that number. Light plane manufacturers realized, almost too late, that the demand for light airplanes would be met by the availability of low-cost government surplus airplanes. Numerous ventures into light plane manufacturing were unable to stay in business due to poor financial situations. Only the "Big Three," Beech, Cessna, and Piper, managed to stay in business with any success during the later 40's and early 50's. In the middle 50's a combination of the development of relatively inexpensive VHF radio equipment, federally operated VHF radio navigational aids, increased airport improvements and construction, light aircraft becoming faster with more personal comfort, and greater general public acceptance of civil aviation was greatly responsible for an increase in instruction and light plane manufacture. The development of general aviation was covered in several points of a report to the late President, John F. Kennedy, on the National Aviation Goals,¹ completed in 1961 and preceded by a forecast for general aviation

completed in 1955, the Curtis Commission Report.¹ This later report proved to be conservative as predictions for the late 60's and early 70's were surpassed during the mid 60's.² Recent forecasts and employment needs for general aviation, as stated by Boltz, are:

1. Approximately one-half of all civil aviation mechanics and more than one-half of all pilots with professional skills are engaged in general aviation activities. General aviation includes all civil aviation except air carriers.

2. At the end of 1965 there were 95,442 general aviation aircraft in the United States; it is estimated that this total will grow to 315,000 at the end of 1980.

3. General aviation aircraft flew a total of 16.7 million hours in 1965; the forecast is a total of 63 million flight hours in 1980.

4. General aviation employed approximately 48,760 commercial pilots in 1965; it is estimated that 162,000 pilots with commercial licenses will be required by the end of 1980. These figures do not include any requirement for pilots flying personal aircraft.

5. General aviation mechanic employment has been estimated at 40,000 in 1965; approximately 138,000 aviation mechanics will be needed by 1980.

6. Considerable avocational interest in flying is indicated by the 3.6 million personal flying hours flown in 1964. It is estimated that this will increase to 7.6 million hours in 1975. An additional indication is the number of youthful pilots in the U.S., 15 per cent, (or 71,689) are between the ages of 16 and 24. Among student pilots who are learning to fly, the under-25 age

group accounts for an even larger portion of the total—37 per cent. Teenagers alone make up 12 per cent of the nation's student pilots—even though they may not fly solo in a private plane before their 16th birthday.

In the Space Age the aerospace industries are to represent the greatest growth potentials, the greatest opportunity for inventiveness, and the most demanding field for training requirements of any American industry.

1. Senate Committee on Govt. Operations, Ide K. Boltz, loc. cit.
CHAPTER IV

AEROSPACE SCIENCE-COURSE OUTLINE

This chapter of the writer's report will contain the outlined course of study for Aerospace Science--Dexfield Community High School. The outline is intended for the use of the teacher but, if it will aid the student, parts may be reproduced and included in student material.

Each chapter of the outline will be followed by, "ENRICHMENT AND TEACHER AIDS." The purpose of this section of each chapter is to aid the teacher in the subject matter and to facilitate the occupational objective of the course.

The basic text for Aerospace Science is, FUNDAMENTALS OF AVIATION AND SPACE TECHNOLOGY, Institute of Aviation, University of Illinois, Urbana, Illinois, 61801.

The outlined course of study is presented in the following pages.
AEROSPACE SCIENCE

for

Dexfield Community High School

Redfield, Iowa

Aims - Objectives
Course Outline
Teacher Aids & Enrichment
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>CHAPTER</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>INTRODUCTION</td>
<td>a</td>
</tr>
<tr>
<td>AIMS AND OBJECTIVES</td>
<td>0-1</td>
</tr>
<tr>
<td>Aims of Aerospace Science</td>
<td>0-1</td>
</tr>
<tr>
<td>Objectives of Aerospace Science</td>
<td>0-1</td>
</tr>
<tr>
<td>ONE</td>
<td>0-3</td>
</tr>
<tr>
<td>Unit I - Living in the Aerospace Age</td>
<td>0-3</td>
</tr>
<tr>
<td>Enrichment and Teacher Aids</td>
<td>0-6</td>
</tr>
<tr>
<td>TWO</td>
<td>0-24</td>
</tr>
<tr>
<td>Unit I - History of Flight and Air Transportation</td>
<td>0-24</td>
</tr>
<tr>
<td>Unit II - Theory of Flight</td>
<td>0-26</td>
</tr>
<tr>
<td>Unit III - Flight Technique</td>
<td>0-28</td>
</tr>
<tr>
<td>Enrichment and Teacher Aids</td>
<td>0-29</td>
</tr>
<tr>
<td>THREE</td>
<td>0-40</td>
</tr>
<tr>
<td>Unit I - Aircraft</td>
<td>0-40</td>
</tr>
<tr>
<td>Unit II - Aircraft Powerplants</td>
<td>0-44</td>
</tr>
<tr>
<td>Unit III - Aircraft Instruments</td>
<td>0-47</td>
</tr>
<tr>
<td>Enrichment and Teacher Aids</td>
<td>0-49</td>
</tr>
<tr>
<td>FOUR</td>
<td>0-59</td>
</tr>
<tr>
<td>Unit I - Navigation</td>
<td>0-59</td>
</tr>
<tr>
<td>Unit II - Meteorology</td>
<td>0-62</td>
</tr>
<tr>
<td>Enrichment and Teacher Aids</td>
<td>0-66</td>
</tr>
</tbody>
</table>
CHAPTER PAGE

FIVE .. 0-73
Unit I - Air Traffic Control and Communications 0-73
Unit II - Dept. of Transportation--FAA 0-75
Enrichment and Teacher Aids 0-80

SIX .. 0-88
Unit I - Space Travel 0-88
Unit II - Unmanned Space Exploration 0-91
Unit III - Manned Exploration 0-92
Enrichment and Teacher Aids 0-93

APPENDIX A. Engineering, Technical, and Trade Schools 0-105
APPENDIX B. Scholarships and Financial Aids 0-116
APPENDIX C. Identification and Addresses of
Film Sources 0-120
APPENDIX D. Identification and Addresses of
Free or Inexpensive Materials 0-122
APPENDIX E. Publishers of Aviation and Space
Periodicals 0-126
APPENDIX F. Miscellaneous Reference Sources 0-128
AEROSPACE SCIENCE

Introduction

Since the beginning of recorded time, man's inventiveness and curiosity have made the world an ever-shrinking body. Man has used: his legs, wheels, boats, carts pulled by animals, oars and sails on his boats, steam, and internal combustion power to transport him from place to place. Each step in the sophistication of transportation was evidenced by an increase in the speed and efficiency of man's mode of transportation. This was all done to satisfy man's innate curiosity to find out what is just beyond the horizon.

Man probably looked at the birds in the sky and dreamed a little. If he could just fly he would not have to be limited to roads, rails, and rivers in his travel. He could go where he wanted and not have to contend with obstacles in his path or be content with only a few miles of travel a day.

Civilization after civilization dreamed of flying like the birds. Historical records show us dreams and attempts of the Chinese, Egyptians, Greeks, Romans, and modern European and American men. In December of 1903 Wilbur and Orville Wright of Ohio completed the first manned flight of a heavier-than-air craft. This first flight lasted only a few seconds and covered less distance than
the wing span of a modern jet airliner. Man was on his way to cutting his bonds with earth and exploring a new element.

Since the early days of aviation aeronautics has developed into an exact science governed by natural law. The intricacies of flying have been learned by millions. Aircraft are used daily for many tasks. Millions of workers are employed in the aviation and related industries. It is possible to race the sun around the world, and win. A trip from New York to California takes a little less than four hours on a non-stop jet airliner. Medical supplies can be dropped into areas that would otherwise be inaccessible for days or even weeks due to weather conditions. Mail is carried, hospital patients transferred to other hospitals through the use of air ambulance services, and foods, sometimes fresher than those you can grow in your own garden, can be on your table thanks to air freight. The airplane has shrunk the world.

Man is now prepared to cast off another bond and explore in the element beyond his atmosphere. Man is preparing to go into outer space. Man is preparing to learn the mysteries, first hand, of the moon, planets, and possibly the universe.

Man will undoubtedly get to where he wants to go because of his inventiveness and curiosity. But, as in the past, man will have to be helped on his way. As the
contributions of Lilienthall and Chanute aided the Wright Brothers, so will the present experiments in space travel aid those who explore and invent in the future.

Aerospace Science is relatively new on our science frontier. This science is not only concerned with aerospace travel but, with the supporting elements of aerospace travel. People on the ground contributing maintenance and technological know-how and those people working in allied industries contributing to aerospace travel. Aerospace travel is thus a proper mixture of all of these elements culminating in successful flight.

It is with this "proper mixture" in mind that Aerospace Science has been developed for the Dexfield Community High School. Aerospace Science is a course that will give the student a background in aeronautics, navigation, meteorology, and the sciences involved in space exploration. At the same time the student will be made aware of the tremendous career potentials in the aerospace and related industries. Correlated with the course work will be visits to aerospace and related facilities so that the student may observe, first hand, what he is studying.

Just as aerospace exploration is a tremendous challenge to the world, aerospace education is a tremendous challenge to the school. Aerospace Science will help meet this challenge.
AEROSPACE SCIENCE - AIMS AND OBJECTIVES

Aims of Aerospace Science are:

1. To understand the facts and methods of Aerospace Science, and the influence of Aerospace upon human life.

2. To develop, through Aerospace Science study, an interest in a salable skill and those characteristics that make the worker a thoughtful, productive, and honest participant in economic life.

3. To develop a science course of sufficient unique characteristics and content so as to attract those science students who would have otherwise terminated their science studies after successful completion of the more traditional science requirements and electives.

Objectives of Aerospace Science are to provide the student with:

1. An adequate reading and speaking vocabulary of things aeronautic and astronautic.

2. An understanding of the importance of weather and climate to flight operations.

3. An understanding of the importance of the physical and biological science to space operations.

4. A general knowledge and understanding of the structural requirements for terrestrial and extraterrestrial vehicles.

5. An understanding of aerospace industry in peace and war.

6. An understanding of the effects of the Aerospace Age on international relations.

7. An introduction to the social, economic, and political implications of current and future aerospace developments.
8. An appreciation of the services rendered by airports and their associated personnel.

9. Familiarity with existing and needed basic governmental services and regulations.

10. A knowledge of available aerospace education resources in materials, personnel, and equipment.

11. An understanding of problems—political, economic, international, and social—that have been created by the Aerospace Age.

12. A realization of how the aerospace vehicle has changed geographic relationships, particularly in terms of mankind's attitudes towards land masses, water barriers, and space travel.

13. A knowledge of career potentials in the science, engineering, maintenance, and related areas of aerospace vehicle development, manufacture, and operation.

14. An understanding of the underlying scientific principles basic to aerospace vehicle development and operation.¹

¹Civil Air Patrol, Aerospace Education Course Syllabus (Ellington AFB, Texas, 1963), p. 2.
UNIT I Living in the Aerospace Age

A. Economic Aspect

1. Aerospace Manufacturing Industry
 a) Aircraft
 b) Engines (piston & turbine)
 c) Parts & accessories
 d) Missiles
 e) Spacecraft

2. Air Transport Industry
 a) Domestic Schedules Airlines
 (1) Trunk lines
 (2) Local-service lines
 (3) Connecting lines
 (4) Helicopter airlines
 (5) All-cargo airlines
 b) International Carriers (passengers and cargo)

3. General Aviation
 a) Business flying
 b) Commercial flying
(1) Air taxi (charter)
(2) Air ambulance
(3) Aerial chemical application
(4) Aerial advertising
(5) Aerial photography
(6) Aerial cartography
(7) Other uses

c) Instructional Flying
 (1) University & college training
 (2) Flight schools

d) Personal Flying

B. Social Aspect

1. Population Distribution
 a) Population mobility
 b) Inter-changing cultures

2. Education
 a) Aeronautical engineering degree schools
 b) Aerospace trade schools

3. Family Life
 a) Leisure time pursuits
 b) Decentralization of family without weakening ties
 c) Consumer products--goods, foods, and services
C. Political Aspect

1. Military operations--Air Force, Army, Navy, and Marines
 a) Mission during peace time
 b) Mission during war time

2. International affairs
 a) Diplomacy
 b) Good will
 c) International politics

3. Politics
 a) Campaigns, national and state
 b) Mobility of elected officials
CHAPTER I ENRICHMENT AND TEACHER AIDS

SELECTED READINGS

_____ . Around The World In 48 Hours. 1725 De Sales Street, N.W., Washington, D.C. 20036.

_____ . Here's How To Make Flying A Family Affair! Wichita, Kansas.

_____ . What Every Woman Should Know About Flying! Wichita, Kansas.

Illinois Bell Telephone Co. The Space Age. Chicago, Ill.

Texas Aeronautical Commission. Importance Of A Modern Airport. Austin, Texas.

The Airport and Your Community. O'Hare International Airport, Chicago, Illinois 60666.

The United States Air Force. Secretary of the Air Force, Washington, D.C.

The Strategic Air Command. Secretary of the Air Force, Washington, D.C.

United States Dept. of Agriculture. That Land Down There. Secretary of Agriculture, Washington, D.C.

SELECTIONS FROM PERIODICALS

Thomason, Dr. Leslie L. "Let's Build General Aviation Up Again," Flight (reprinted and distributed by Cessna Aircraft Co., Wichita, Kansas).

"Your Wings are Showing!" *Future* (January, 1961). Weaver, Kenneth F. "Of Planes and Men," *National Geographic* (September, 1965), 298-349.

COMPANY JOURNALS

The following journals of aerospace industry are available and the requestor may have his name placed on the mailing list for future copies. These journals and publications contain information of the company's research and progress as well as general interest articles.

AVIATION BULLETIN, Iowa Aeronautics Commission, State House, Des Moines, Iowa.

PROGRESS REPORT, Douglas Aircraft Group, Aircraft Division, 3855 Lakewood Blvd., Longbeach, California.
ROCKET REVIEW, Aerojet-General Corporation, A Subsidiary of the General Tire and Rubber Co.

VECTORS, Hughes Aircraft Co., Culver City, California.

SELECTED READINGS IN CAREERS AND OCCUPATIONS

FILM SUGGESTIONS

Airplane Changes Our World Map U-1227 sui
Flight 803 mtps
Mr. Withers Stops The Clock # 27 iac
Song Of The Clouds # 50 iac
The Mission Of The U. S. Air Force OC-13 af
Wings For Doubting Thomas ces
ing introduction To Aerospace (filmstrip) cap
ACTIVITIES AND PROJECTS

1. Construct maps showing commercial air routes.

2. Reports on: Air Freight; Aerospace Manufacturing in the U.S.A.; General Aviation Trends; and How Aviation Has Changed Military Thinking.

3. A talk by a local airport operator or a fixed base operator at a large municipal airport.

4. Field trips to: SAC Headquarters, Offutt AFB, Omaha, Nebraska; and the Air National Guard in Des Moines.

5. Reports on occupational areas in aerospace manufacturing, civil aviation, etc.

OCCUPATIONAL AREAS - CHAPTER I

Dictionary of Occupational Titles, 3rd edition, numerical classifications are used.

AEROSPACE MANUFACTURING INDUSTRY

Research & Design

- Aerodynamicist 002.081
- Aerodynamics Engineer 002.081
- Aeronautical Engineer 002.081
- Aerophysics Engineer 002.081
- Aerospace Engineer 002.081
- Aircraft Designer 002.081
- Astronomer 021.088
- Ceramic Engineer 008.081
- Chemical Engineer 022.081
- Chemist 023.081
- Electrical Engineer 003.081 & 087
- Electronics Engineer 003.081
- Industrial Engineer 012.081
- Mathematician 020.088
- Mechanical Engineer 007.081
- Metallurgical Engineer 011.081
Metallurgist 011.081
Nuclear Engineer 015.081
Physicist 023.081 & 088
Test Pilot 196.283

Technicians

Aerodynamics Analyst 011.381
Ceramic Analyst 006.081
Computer Programmer 007.187
Design Draftsman 002.281
Electronic Technician 003.181
Engineering Aid 007.181
Engineering Technician 007.181
Experimental Technicians 007.181
Mathematics Aid 020.188
Physical Science Aid 011.281
Powerplant Technician 621.281
Stress Analyst 002.281
Systems Test Technician 020.088
Technical Illustrator 017.281
Technical Writer 139.288
Tool Designer 007.081

PLANT OCCUPATIONS

Sheet Metal

Sheetmetal Worker 804.281
Powerbrake Operator 617.380
Powerhammer Operator 617.782
Powershear Operator 615.782 & 885
Punchpress 615.282
Profile Cutting Machine Operator 816.782
Tube Bender (hydraulic & elec.) 709.584
Riveter 810.782 810.884
Welder 811.782 811.884
Heat Treater 504.782
Painter 845.781
Plater 500.380
Machining & Testing

<table>
<thead>
<tr>
<th>Position</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>Machinist</td>
<td>600.280 & 601.280</td>
</tr>
<tr>
<td>Machine Tool Operator</td>
<td>609.885</td>
</tr>
<tr>
<td>Jig & Fixture Builder</td>
<td>761.381</td>
</tr>
<tr>
<td>Tool & Die Maker</td>
<td>601.280</td>
</tr>
</tbody>
</table>

Inspecting & Testing

<table>
<thead>
<tr>
<th>Position</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>Outside Production Inspector</td>
<td>806.381</td>
</tr>
<tr>
<td>Receiving Inspector</td>
<td>806.384</td>
</tr>
<tr>
<td>Machine Parts Inspector</td>
<td>609.381</td>
</tr>
<tr>
<td>Fabrication Inspector</td>
<td>607.381</td>
</tr>
<tr>
<td>Assembly Inspector</td>
<td>806.381</td>
</tr>
</tbody>
</table>

Assembly & Installation

<table>
<thead>
<tr>
<th>Position</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>Final Assembler</td>
<td>806.781</td>
</tr>
<tr>
<td>Missile Assembly Mechanic</td>
<td>652.281</td>
</tr>
<tr>
<td>Powerplant Installer</td>
<td>621.381</td>
</tr>
<tr>
<td>Electrical Assembler</td>
<td>728.884</td>
</tr>
<tr>
<td>Armament Assembler</td>
<td>801.381</td>
</tr>
<tr>
<td>Airplane Woodworker</td>
<td>729.281</td>
</tr>
<tr>
<td>Radio Installer</td>
<td>823.281</td>
</tr>
</tbody>
</table>

Flight Checkout

<table>
<thead>
<tr>
<th>Position</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chief Mechanic</td>
<td>621.281</td>
</tr>
<tr>
<td>Engine Mechanic</td>
<td>621.281</td>
</tr>
<tr>
<td>Electronics Checkout Man</td>
<td>825.281</td>
</tr>
</tbody>
</table>

Material Handling, Maintenance, and Custodial

<table>
<thead>
<tr>
<th>Position</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>Truck Driver</td>
<td>Carpenter</td>
</tr>
<tr>
<td>Stock Clerk</td>
<td>Plumber</td>
</tr>
<tr>
<td>Shipping</td>
<td>Guard</td>
</tr>
<tr>
<td>Tool Crib Attendant</td>
<td>Fireman</td>
</tr>
<tr>
<td>Maintenance Mechanic</td>
<td>Janitor</td>
</tr>
<tr>
<td>Millwright</td>
<td></td>
</tr>
</tbody>
</table>
AIR TRANSPORTATION

Flight Operations

<table>
<thead>
<tr>
<th>Position</th>
<th>Salary</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chief Pilot</td>
<td>196.168</td>
</tr>
<tr>
<td>Instructor Pilot</td>
<td>196.128</td>
</tr>
<tr>
<td>Captain</td>
<td>196.268</td>
</tr>
<tr>
<td>Co-Pilot</td>
<td>196.283</td>
</tr>
<tr>
<td>Flight Engineer</td>
<td>621.281</td>
</tr>
<tr>
<td>Steward or Stewardess</td>
<td>352.878</td>
</tr>
<tr>
<td>Flight Dispatcher</td>
<td>912.368</td>
</tr>
<tr>
<td>Meteorologist</td>
<td>025.068</td>
</tr>
</tbody>
</table>

Airline Communication

<table>
<thead>
<tr>
<th>Position</th>
<th>Salary</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ground Radio Operator</td>
<td>193.168</td>
</tr>
<tr>
<td>Teletypist</td>
<td>203.588</td>
</tr>
</tbody>
</table>

Airline Maintenance

<table>
<thead>
<tr>
<th>Position</th>
<th>Salary</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maintenance Inspector</td>
<td>621.281</td>
</tr>
<tr>
<td>A & E Mechanic</td>
<td>621.281</td>
</tr>
<tr>
<td>Instrument Technician</td>
<td>710.281</td>
</tr>
<tr>
<td>Radio Technician</td>
<td>825.381</td>
</tr>
</tbody>
</table>

Airline Office and Sales

<table>
<thead>
<tr>
<th>Position</th>
<th>Salary</th>
</tr>
</thead>
<tbody>
<tr>
<td>District Sales Manager</td>
<td>163.118</td>
</tr>
<tr>
<td>District & Operations Station Mgr.</td>
<td>184.118</td>
</tr>
<tr>
<td>Sales Representative</td>
<td>252.358</td>
</tr>
<tr>
<td>Reservation Agent</td>
<td>912.368</td>
</tr>
<tr>
<td>Ticket Agent</td>
<td>919.368</td>
</tr>
<tr>
<td>Passenger Service Agent</td>
<td>184.168</td>
</tr>
<tr>
<td>Air Freight Agent</td>
<td>912.368</td>
</tr>
<tr>
<td>Lineman</td>
<td>912.887</td>
</tr>
<tr>
<td>Ramp Agent</td>
<td>912.368</td>
</tr>
<tr>
<td>Public Relations Representative</td>
<td>165.068</td>
</tr>
<tr>
<td>Personnel Representative</td>
<td>166.118</td>
</tr>
<tr>
<td>Research Analyst</td>
<td>020.168</td>
</tr>
<tr>
<td>Programmer</td>
<td>020.168</td>
</tr>
<tr>
<td>Accountant</td>
<td>160.188</td>
</tr>
</tbody>
</table>
Engineers

Engineering positions in the Air Transportation Industry are the same D.O.T. classifications as aerospace manufacturing industry. Air Transportation engineers work with aircraft manufacturers to convey airline needs for a particular operation.

Office Personnel

Business Machine Operator
Switchboard Operator
Secretary

Stenographer
Typist
File Clerk

GENERAL AVIATION

Pilot

Agriculture Pilot
Commercial Pilot
Highway Patrol Pilot
Instructor Pilot
Conservation Pilot

196.283
196.283
375.168
196.228
180.168

Maintenance

Aircraft & Engine Mechanic
Overhaul Mechanic
Radio Mechanic
Instrument Mechanic
Propeller Mechanic

621.261 & 884
621.261
823.261
710.281
600.381

Administration

Manager (Many classes--Business, Airport, etc.)
Sales
Clerical (Usual office classes.)

280.258 & .358
MILITARY

See recruiting booklets and manuals for occupations in the Air Force and aviation branch of the other services. The occupations are similar to civilian positions; however, there are some military specialities.

ELECTRONIC AND COMPUTER INDUSTRIES

<table>
<thead>
<tr>
<th>Administrative</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Electronic Engineer</td>
<td>003.081</td>
</tr>
<tr>
<td>Computer Engineer</td>
<td>020.088</td>
</tr>
<tr>
<td>Computer Systems Engineer</td>
<td>003.187</td>
</tr>
<tr>
<td>Data Processing</td>
<td>012.168</td>
</tr>
<tr>
<td>Electronic Technician</td>
<td>003.181</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Manufacturing</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Assembly</td>
<td>729.884</td>
</tr>
<tr>
<td></td>
<td>720.884</td>
</tr>
<tr>
<td></td>
<td>726.781</td>
</tr>
<tr>
<td></td>
<td>726.884</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Fabricating</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Glass Blowing & Glass Lathe</td>
<td>674.782</td>
</tr>
<tr>
<td>Grid Lathe</td>
<td>925.884</td>
</tr>
<tr>
<td>Coil Winders</td>
<td>724.781 & .884</td>
</tr>
<tr>
<td>Crystal Grinders & Finishers</td>
<td>726.884 & .085</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Processing</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Electroplaters & Tinners</td>
<td>501.685</td>
</tr>
<tr>
<td>Anodizer</td>
<td>501.282</td>
</tr>
<tr>
<td>Silk Screen Operator</td>
<td>726.887</td>
</tr>
<tr>
<td>Etching</td>
<td>590.885</td>
</tr>
<tr>
<td>Operator--Infrared Oven & Hydrogen Furnace Fires</td>
<td>590.885</td>
</tr>
<tr>
<td>Exhaust Operator</td>
<td>725.684</td>
</tr>
<tr>
<td>Sealers</td>
<td>692.885</td>
</tr>
</tbody>
</table>
Testing & Inspecting

Electronics Assembly Inspector \textbf{722.281}

AIRPORT

Administration

Airport Superintendent \textbf{184.118}
Airport Engineer \textbf{005.081}

Maintenance

Airport Electrician \textbf{824.781}
Airport Maintenance Chief \textbf{899.137}
Airport Serviceman \textbf{912.384}

SOURCES OF OCCUPATIONAL INFORMATION

The firms, or organizations, listed in this section will supply occupational information free or at a small cost.

Aerojet-General Corp. Spacelines. Public Relations, P. O. Box 702, 9100 E. Flair Drive, El Monte, Calif. 91734, (free).

American Ceramic Society, Inc. For Career Opportunities Explore The Wonder World Of Ceramics. 4055 N. High St., Columbus, Ohio 43214 (free).

American Electroplaters' Society, Inc. Introduction To Electroplating. 443 Broad Street, Newark, New Jersey 07102 (35¢).

American Federation of Labor and Congress of Industrial Organization—Education Dept. Electrical Workers #49, Communication Workers #28, Aircraft Machinists #43, Machinists #10, Airline Workers #66, Missile Makers #90, Consultant, Guidance Services, State of Iowa, Des Moines, Iowa 50319 (free loan films).

American Institute of Chemical Engineers. Will You Be A Chemical Engineer? 345 East 47 St., New York, New York 10017 (free).

American Institute of Industrial Engineers. Industrial Engineering. 345 East 47 St., New York, New York 10017 (free).

American Institute of Physics. Physics As A Career. 335 East 45 St., New York, New York 10017 (free).

American Meteorological Society. The Challenge of Meteorology. 45 Beacon St., Boston, Mass. 02108 (free).

American Society For Engineering Education. Technician Career Opportunities In Engineering Technology and Education Of The Engineering Technician. Publication and Reprints, Dupont Circle Bldg., 1346 Connecticut Ave., N.W., Washington, D.C. 20036 (50¢ and $1.25).

American Society of Tool & Manufacturing Engineers. Careers In Tool and Manufacturing Engineering and Should You Be A Manufacturing Engineer? 20501 Dearborn, Michigan 48128 (both free).

E. I. Du Pont De Nemours And Co.--Public Relations Dept. Careers In Engineering, Careers at Du Pont In Chemistry and Chemical Engineering, The Challenge of Industrial Change, and The Industry of Discovery. Wilmington, Delaware 19898 (all free).

E. P. Dutton And Company. Careers And Opportunities In Electronics, ($3.95), Careers And Opportunities In Astronautics, ($3.95), Careers & Opportunities In Chemistry, ($3.75), Careers & Opportunities In Engineering, ($3.75), 201 Park Ave. South, New York, New York 10003.

General Motors Corp. Can I Be A Technician?, Can I Be An Engineer?, Can I Be A Craftsman?, Can I Be A Draftsman?, Can I Be A Mathematician? Public Relations Staff, General Motors Bldg., Detroit, Michigan 48202 (all free).

J. Weston Walch, Publisher. Opportunities In Mathematics and Opportunities In Science. Portland, Maine 04104 (both $1.00).

Material Handling Institute, Inc. Career Opportunities For You In Material Handling. Educational Division, Gateway Towers, Pittsburgh, Pa. 15222 (free).

Mathematical Association of America. Guidebook To Departments In The Mathematical Sciences. SUNY at Buffalo, Buffalo, New York 14214 (50¢).

National Guard Bureau. This Is The Air National Guard. The Pentagon, Washington, D.C. 20310 (free).

Society Of Plastics Engineers. Plastics As An Engineering Career. 65 Prospect Street, Stamford, Connecticut 06902 (free).

University of Missouri At Rolla. Electrical Engineering, Chemical Engineering, Chemistry, Mechanical Engineering, Applied Mathematics, Nuclear Engineering, Physics, and Computer Science. Rolla, Missouri 65401 (all free).

FREE OR INEXPENSIVE MATERIALS

The Age Of Flight (free) uac
Contact To Countdown (free) hs
North American Aviation (free) naa
Planning the Airport Industrial Park (free) faa
The Airport and Your Community (free) ual
Demonstration Aids For Aviation Education (free) faa
The Challenges to U. S. Civil Air Transport (free) cgl
The Air Express Story (free)
Airline Route Map (free)
Protecting The Forests From Fire (free)
General Aviation And Its Relationship To Industry And The Community (free)
CHAPTER TWO

Unit I History of Flight and Air Transportation

A. Ancients
 1. Mythology
 2. Leonardo da Vinci

B. Balloons and Gliders
 1. Sir George Cayley
 2. Besnier
 3. Montgolfier Brothers
 4. Henri Giffard
 5. David Swartz
 6. von Zeppelin
 7. Octave Chanute
 8. Lilienthal
 9. John Montgomery
 10. Langley
 11. John Stringfellow
 12. Charles Manley
 13. Wright Brothers

C. Man's First Flight

D. Later Developments
 1. Glen Curtis
 2. Louis Bleriot
 3. C. K. Hamilton
E. Contributors to Aircraft Development

1. Military Aviation
2. National Air Races
3. Round-The-World and Endurance Flights

F. Air Mail, Air Passenger, Air Freight Development

1. Kelley Act, 1925
2. Air Commerce Act, 1926
3. Black-Mc Keller Act, 1934
4. Civil Aeronautics Acts, 1938 & 1940
5. Truman Committee, 1947-48
Unit II Theory of Flight

A. Shape of wing
 1. Airfoil
 2. Camber
 3. Chord - Span
 4. Aspect Ratio

B. Lift
 1. Speed of Wing
 2. Angle of Attack
 3. Air Temperature
 4. Air Pressure
 5. Center of Lift
 6. Center of Pressure
 7. Relative Wind
 8. Change of camber
 9. Burble
 10. Stall
 11. Bernoulli's Principle

C. Weight - Thrust - Drag

D. Axes of Rotation
 1. Longitudinal
 2. Horizontal
 3. Vertical
E. Stability
 1. Static
 2. Dynamic
 3. Around Axes

F. Control Surfaces
 1. Rudder
 2. Elevators
 a) Canards
 3. Ailerons
 4. Trim Tabs
Unit III Flight Technique

A. Pre-Flight
 1. Walk-Around Inspection
 2. Starting The Engine
 a) Temperature & Pressure Gauges
 3. Taxiing
 4. Engine Run-Up

B. The Take Off

C. Airplane Attitude and Use of Controls
 1. Controls
 2. Straight and Level Flight
 3. The Climb
 4. The Descent (glide)
 a) Use of Engine in Changing Attitude
 5. Coordination of Controls
 a) The Turn
 b) Rate of Turn
 c) Slipping--Skidding
 6. Stall

D. Airport Traffic Patterns
 1. Departure and Entry
 2. The Four Legs

E. Landing Approach

F. Tiedown
CHAPTER II ENRICHMENT AND TEACHER AIDS

SELECTED READINGS

Unit I

Unit II

Unit III

Brig. Gen. Neil D. van Sickle, USAF, Editor. Modern Air-

Charles A. Zweng. Flight Instructor. North Hollywood,

SELECTIONS FROM PERIODICALS

Unit I

Air Classics Editors, "Disasters Derby," Air Classics
(Fall and March-April, 1965), 22 and 29.

Flying (December, 1962), 30.

Ora L. Jones. "I Missed Fame By A Mile At Kitty Hawk,"
Pilot (December, 1964), 34.

Flying (April, 1962), 44.

John Leyden. "Jimmie Doolittle--The First Instrumentalist,"

. "Saga Of The PN-9 No. 1," FAA News (November,
1966), 10.

(April, 1967), 10.

(August, 1966), 11.

44.

Ed Mack Miller. "How They Flew The Airmail," Flying
(August, 1966), 86.

Joe Mizrahi. "The Gee Bee," Air Classics (August-September,

. "Wedel-Williams Story," Air Classics (May-June,
1964), 35.

The following periodicals generally contain articles of historical interest in each issue:

AEROSPACE HISTORIAN
AIR CLASSICS
AIR PROGRESS
ANTIQUE AIRPLANE ASSOCIATION NEWS
SPORT FLYING
Unit II

Unit III

Donald Chase. "Short Field Ins and Outs," Pilot (July, 1963), 43.

The following periodicals are specifically oriented toward upgrading pilot knowledge and skills.

AIR FACTS

AIRWAYS
FILM SUGGESTIONS

Unit I
Air Maniacs #73 iac
Ceilings Unlimited #22 iac
Early Days (Pre 1930) #52 iac
First Flight of The Wright Bros. U-4173 sui
Five Steps to The Jets 1831 mtps
Fools, Daredevils, and Geniuses #14 iac
Higher and Higher #19 iac
Highlights of Aviation #22 iac
Man In Flight #57 iac
Men With Wings AFMR 620 af
"1930" #53 iac
We Saw It Happen #39 iac

Unit II
Aerodynamics: Air Flow TF 1-160 af
Aerodynamics: Forces Acting on Airfoil TF 1-161 af
Airplane Structures--Control Surfaces TF 1-700 af
Beyond The Stick and Rudder TF 1-5300 af
How an Airplane Flies--Lift #36 iac
How an Airplane Flies--Drag #37 iac
How an Airplane Flies--Thrust & Forces #140 iac
ACTIVITIES AND PROJECTS

Unit I

1. Reports on the contributors to aviation development.

2. Reports on air racing and its contributions to aircraft development and safety.

3. Make, or obtain, models showing the change of aircraft from 1903 to the present.

4. Prepare a bulletin board of historic and contemporary aircraft pictures.

5. Field trip to Des Moines Municipal Airport to see antique aircraft restored by Mr. Hud Weeks.

6. Field trip to Iowa Historical Building to look over the aviation exhibits.
7. Field trip to North Field in Des Moines and Ottumwa Municipal Airport to look over antique airplanes restored and flown by members of the Antique Airplane Association. (Ottumwa is the National Headquarters of the AAA.)

Unit II

1. Construct gliders of balsa wood with various wing shapes and positions and fly them.

2. Build a wind tunnel.

3. Construct and test various airfoils in the wind tunnel.

4. Design an airplane, produce the sizes to predetermined scale and construct it of balsa and other model airplane materials.

5. Field trip to Iowa State University, Department of Aerospace Engineering.

Unit III

1. Obtain, or build a small model airplane with working control surfaces to observe usual operation of the surfaces.

2. Fly U-Control model airplanes.

3. Field trip to an airport for actual aircraft orientation and a familiarization ride to demonstrate control functions and operations of instruments.

4. Report on occupations in flight training area.
OCCUPATIONAL AREAS - CHAPTER II

Unit II

Aerodynamicist 002.081
Aerodynamics Engineer 002.081
Aeronautical Engineer 002.081
Test Pilot
Aerodynamics Analyst 011.381

... also see occupational Area - Chapter I.

Unit III

Commercial Pilot 196.283
Instructor Pilot 196.228
Ground Instructor

... also see Occupational Area - Chapter I.

SOURCES OF OCCUPATIONAL INFORMATION

Unit II

American Institute of Aeronautics and Astronautics, 1290 Sixth Ave., New York City 10019.

... also see "Sources," Chapter I.

Unit III

Allied Pilots Association, 405 Lexington Ave., New York City 10017.
National Association of Flight Instructors, P.O. Box N, Washington, D.C. 20014.

National Business Aircraft Association, 425 13th St., N.W., Washington, D.C.

... also see "Sources," Chapter I.

FREE OR INEXPENSIVE MATERIALS

Unit I
Airplane Drawings--World Wars I & II ($.50 ea.)
Air Transportation Charts--Mile Stones in Aviation ($6.50)
Wright Bros. Highlights ($.10)
The Wright Bros. Flyer ($1.00)
The Wright Bros. ($1.00)
Historical Photos #SIL-168 Rev. 11/58 (free)
Drawings of Historic Aircraft #SIL-122 Rev. 11/58 (free)
Information Leaflets (free)
The Flying Clippers (free)
Wright Bros. National Memorial (free)
Historic Airplanes (free)

Unit II
Shape of Flight (free)
Unit III
Exam-O-Gram (free)
Illustrated Flying Basics ($1.50)
Pre-Flight Facts (free)
Student Pilot Guide (free)
The Ten Most Frequently Asked Questions About Learning To Fly (free)
Plane Sense (free)
Flight Instruments ($1.95)
Handbook For Theory Of Flight Kit (.50¢)
Flight Training Guide ($1.00)
CHAPTER THREE

Unit I Aircraft

A. General Structure of an Airplane

1. Design Considerations
 a) Carrying Space
 b) Method of Lift
 c) Propulsion System
 d) Control System
 e) Navigational Devices
 f) Ground-Handling Apparatus

2. Wings
 a) Monoplane
 (1) Low Wing
 (2) Mid Wing
 (3) High Wing
 (4) Parasol Wing
 b) Biplane
 (1) Negative or Positive Stagger
 c) Shape of Wing
 (1) Rectangle
 (2) Elliptical
 (3) Swept Wing
 (4) Delta
 (5) Combinations
d) Structure
 (1) Full Cantilever
 (2) Externally Braced
 (3) Honeycomb
 (4) Fabric Covered
 (5) Metal Covered

e) Modifications
 (1) Flaps
 (2) Slots
 (3) Extending Leading Edges

3. Fuselage (hull)
 a) Truss
 b) Semi-Monocoque

4. Tail Assembly (empennage)
 a) Horizontal Stabilizer
 b) Vertical Stabilizer
 c) 'T' Tail

5. Landing Gear
 a) Conventional (tail wheel)
 b) Tri-Cycle (nose wheel)
 c) Fixed
 d) Retractable
e) Shock Absorbers
 (1) Oleo Struts
 (2) Shock Cords
 (3) Spring Steel
f) Brakes
g) Pontoons
h) Skis

6. Airplane Accessories
 a) De-Icing Equipment
 b) Cabin Pressurization Equipment

7. Other Aircraft Types
 a) Helicopter
 b) Gyroplane
c) Glider
d) Airship
 (1) Rigid
 (2) Semi-Rigid
e) Ornithopter
f) Convertoplane
g) STOL and VTOL

8. Construction Materials & Technique
 a) Metal
 (1) Aluminum, Magnesium, Titanium
 Copper, Steel Alloys
b) Wood
 (1) Birch, Mahogany, Ash, Spruce

c) Joining
 (1) Welding, Rivoting, Soldering, Brazing
 (2) Nuts, Bolts, Screws, Special Fasteners
 (3) Nails, Glue, Casein, Epoxy
 (4) Safetying

d) Linen - Glass - Rubber - Asbestos

9. Aircraft Inspections
 a) Annual (periodic)
 b) 100 Hour

10. SST
Unit II Aircraft Powerplants

A. Desired Engine Requirements
 1. Power to Weight Ratio
 2. Reliability At All Speeds
 3. Fuel, Oil, Power Ratio
 4. Lack of Vibration
 5. Ease of Maintenance

B. Reciprocating Engines
 1. Types
 a) Inline
 b) Horizontally Opposed
 c) Radial
 (1) Single--Double Row
 d) 'V'
 e) Rotary
 f) Other Arrangements
 2. Parts
 a) Block
 b) Cylinder - Piston - Rods - Valves
 c) Accessories
 3. Four-Stroke Cycle Principle
4. Engine Systems
 a) Fuel
 (1) Carburetor Requirements
 (2) Gasoline Requirements
 (a) Octane
 (b) Color
 (c) Detonation
 (d) Anti-Detonation
 b) Induction
 (1) Supercharger
 (2) Turbo Charger
 c) Lubrication
 (1) Dry--Wet Sump
 (2) Hopper Tank
 (3) Scavenger Pump
 d) Ignition
 (1) Magneto
 (2) Distributor
 (3) Spark Plugs

C. Engine Placement
 1. Tractor
 2. Pusher
 3. On Wings
 4. On a Pylon
5. Number of Engines

D. Propellers

1. Number of Blades
 a) Two - Three - Four

2. Direction of Rotation

3. Pitch
 a) Fixed
 b) Controllable
 c) Adjustable
 d) Constant Speed
 e) Feathering
 f) Reversible

E. Reaction Engines

1. Jet
 a) Ram Jet
 b) Pulse Jet
 c) Turbo Jet
 d) Turbo Prop
 e) Turbo Fan

2. Rocket

3. Atomic

F. Power Factors

1. Horse Power Formula

2. Thrust Formula
Unit III Airplane Instruments

A. Pitot - Static Tube
B. Venturi Tube
C. Bourdon Tube
D. Flight Instruments
 1. Air Speed
 2. Altimeter
 3. Turn and Bank
 4. Vertical Speed
 5. Gyro Horizon
E. Navigation Instruments
 1. Magnetic Compass
 2. Directional Gyro
F. Engine Instruments
 1. Tachometer
 a) Magnetic
 b) Electric
 2. Oil Pressure
 3. Oil Temperature
 4. Cylinder Temperature
 5. Carburetor Air Temperature
 6. Manifold Pressure Gauge
 7. Fuel Flow Meter
 8. Exhaust Gas Temperature (EGT)
G. Other Instruments

1. Fuel Quantity Guage(s)
2. Outside Air Temperature (OAT)
3. Vacuum Guage
CHAPTER III ENRICHMENT AND TEACHER AIDS

SELECTED READINGS

Unit I

Unit II

... also, information for this unit may be found in the sources listed for Unit I.

Unit III

... also, information for this unit may be found in the sources listed for Unit I and Unit II.

SELECTIONS FROM PERIODICALS

Unit I

Unit II

Unit III

FILM SUGGESTIONS

Unit I and Unit II

Aircraft Engines TFI-136 faa
Aircraft Welding MN-92 faa
Aviation Mechanic FA-315 faa
Periodic Inspection--Airplane OE-282 faa
Periodic Inspection--Engine OE-283 faa
Servicing An Airplane
Aircraft Engines (Part I)
Aircraft Propellers
The ABC Of Jet Propulsion
The Gas Turbine
The History Of The Helicopter
Transonic Flight
World On Wings
Birth Of A Jet
DC-8 Autopilot
Prelude To Power
Speed and Heat

Unit III
The Sensitive Altimeter--General Use

ACTIVITIES AND PROJECTS

Unit I and Unit II

1. Assemble working plastic model of a radial aircraft engine.

2. Assemble working plastic model of a turbine aircraft engine.

3. Field Trips to: An airport maintenance shop; Des Moines Technical High School--Aviation Division; and Air National Guard maintenance shop (jets).

4. Reports on occupations in the maintenance areas.
Unit III

1. Demonstrations of the Venturi and Bernoulli principles.

2. Obtain discarded aircraft instruments to dismantle in class.

3. Report and demonstrate the characteristics and function of a gyro and how it is used in an airplane.

4. Report on instrument development and repair areas.

OCCUPATIONAL AREAS - CHAPTER III

Unit I and Unit II

- Powerplant Technician: 621.281
- Powerplant Installer: 621.381
- Chief Mechanic: 621.281
- Engine Mechanic: 621.281
- Propeller Mechanic: 600.381

... also see Chapter I, Occupational Areas, for:

- Research & Design; Technicians; and all Plant Occupations under Aerospace Manufacturing Industry and Skilled Occupations under Manufacturing Industry, Air Transportation, and General Aviation.

Unit III

- Aerodynamicist: 002.081
- Physicist: 023.081 & .088
- Aerodynamics Analyst: 011.381
- Design Draftsman: 002.281
- Tube Bender: 709.684
- Machinist: 600.280 & .281
- Assembly Inspector: 806.381
- Final Assembler: 806.781
- Instrument Mechanic: 710.281
SOURCES OF OCCUPATIONAL INFORMATION

Unit I, Unit II, and Unit III

... also see "Sources," Chapter I.

FREE OR INEXPENSIVE MATERIALS

Unit I

Documentary Note, #2 SE 210 Caravel (free) afr
Progress Report--DC-9 August, 1967, #7 (free) ual
The DC-8 Mainliner (free) ual
Field Service Digest (Lockheed) (free) lac
Aircraft Number 116 (.50¢) naec
Jets (.50¢) naec
U. S. Naval Aircraft Designations (free) nan
The Story of Helicopters (free) uac
The X-15 Research Airplane (free) nasa
Boeing Documentary Note (free) afr
Air Age Information Folder (free) bac
Illustrated Brochure, Beech Airplanes (free) bac
Teacher's Packet of Information (free) ces
Lear Jet (free) ljc
Lockheed Pathways To The Stars (free)

Unit II
Jet Facts (free)
Do's and Dont's (free)
Power To Set World Records
Sky Parade (free)
The Lycoming "Flyer" (free)
Engine Specification Sheets (free)
The Aviation Spark Plus (free)
All About America's Favorite Aviation Spark Plus (free)
Precise Flight Power (free)
The Story Of The Turbine (free)
Flight Power From Allison (free)
Turboshift Power (free)
Hercules Turboprop Power (free)
Propjet Convair (free)
Test Of A Regenerative Turboprop Aircraft Engine (free)
Approach, Jan., 1966 (free)
Engineered For Power (free)
Aeronautical Powerplants (free)
Unit III
The Gyroscope Through The Ages (free) sgc
Cyros (free) lsi
E.G.T., Specification Sheets (free) alc
Chapter Four

Unit I Air Navigation

A. Forms of Navigation

1. Pilotage
 a) Courseline
 b) Check Points

2. Dead Reckoning
 a) True Course
 (1) True North
 b) True Heading
 c) Magnetic Course
 (1) Magnetic North
 (2) Variation
 d) Compass Course
 (1) Deviation
 e) Wind Correction Angle
 f) Indicated Air Speed
 g) True Air Speed
 h) Indicated Altitude
 i) True Altitude
 j) Track
3. Radio

a) Aids

(1) Federal Airlines
(2) Omni Range (VOR)
(3) Distance Measuring Eqpt. (DME)
(4) Transponder
(5) Radio Beacons
(6) Automatic Direction Finder (ADF)
(7) Coupled Auto Pilot
(8) Instrument Landing Systems (ILS)
 (a) Localizer
 (b) Glide Slope
 (c) Marker Beacons
 (d) Radar
 i) Precision
 ii) Surveillance
 (e) Back Course

b) VOR Radio Equipment

(1) Frequency Selector
(2) Omni Bearing Selector (OBS)
(3) Course Needle
(4) Ambiguity Meter (To - From)
(5) VOR Cross Fixing
4. Celestial
 a) Equipment
 (1) Sextant
 (2) Astrolabe
 (3) Chronograph
 (4) Air Almanac
 b) Electronic
 (1) Doppler
 (2) Astro-Tracker

5. Charts
 a) Local
 b) Sectional
 c) World (WAC)
 d) Planning
 e) Radio Facility

6. Other Equipment
 a) E 6B Computer
 b) Plotter
Unit II Meteorology

A. The Atmosphere
 1. Troposphere
 2. Tropopause
 3. Stratosphere
 4. Ionosphere
 5. Outer Space

B. Elements of Meteorology
 1. Temperature
 a) Standard Temperature
 b) Convection
 c) Conduction
 d) Radiation
 2. Pressure
 a) Standard Pressure
 b) Units of Measurement
 (1) Lbs. Per Sq. Inch
 (2) Inches of Mercury
 (3) Milibars
 3. Moisture
 a) Relative Humidity
 b) Dew Point
 c) Precipitation
4. Clouds
 a) High Level
 b) Middle Level
 c) Low Level
 d) Vertical Development
 e) Cumulus
 f) Stratus

5. Circulation
 a) Coriolis Force
 b) Doldrums
 c) Trade Winds
 d) Westerlies - Easterlies

6. Air Masses
 a) Polars
 b) Tropicals
 c) Maritimes
 d) Continentals

7. Fronts
 a) Cold Front
 b) Warm Front
 c) Occluded Front
 d) Stationary Front
C. Importance to Aviation

1. Ceiling
 a) Effective Pilot Ceiling
 b) Reported Ceiling

2. Visibility
 a) Prevailing Visibility
 b) Runway Visibility
 c) Runway Visual Range

3. Turbulence
 a) Convection Currents
 b) Obstructions to Windflow
 c) Wind Shear
 d) Mountain Wave
 e) Clear Air Turbulence
 f) Wake Turbulence

4. Icing
 a) Forms
 (1) Clear Ice
 (2) Rime Ice
 (3) Frost
 b) Effects in Flight
D. Weather Information
1. Sequence Reports
 a) Sequence Symbols
2. Area Forecasts
3. Terminal Forecasts
4. Winds Aloft Reports
5. Maps (Charts)
 a) Daily
 b) Hourly
 (1) Map Station Models
 (2) Map Symbols
6. Automatic Transcribed Weather Service (ATWS)
7. Pilot Reports (FIREPS)
8. Severe Weather Warnings
 a) SIGMETS
 b) AIRMETS
SELECTED READINGS

Unit I

Unit II

SELECTIONS FROM PERIODICALS

Unit I

——. "Navigate By Doppler," *Flying* (June, 1963), 32.

——. "Need Or Nuisance," *Flying* (October, 1964), 56.

Unit II

FILM SUGGESTIONS

Unit I

Celestial Navigation--The Earth U-1310 sui

Celestial Navigation U-1311 sui

Give Me A Second Station SFP-411 af

Highways In The Sky SFP-366 af

Long Range Navigation TF-5228 af
Navigation
Omni Bearing Distance Navigation
Primary Pilot Navigation
Radio Compass Equipment (1 & 2)
Where Am I?
Wind And The Navigator--Wind Theory

Unit II
Air Masses And Fronts
Flight Decision
Modern Weather Theory--Atmospherics
Modern Weather Theory--Circulation
Origins of Weather
Radar Refraction And Weather
The Cold Front
The Warm Front
The Weather
Thunderstorms
Unchained Goddess
Weather Research
Weather--Friend or Foe
Your Air Weather Service

MN-83G faa
#38 iac
TF-4990 af
TF-4989 af
SFP-1128 af
TF-5206a af
TPI-4481 faa
#25 iac
U-1307 sui
U-1306 sui
#62 iac
TF-1-5079a af
#103 faa
#104 faa
U-993 sui
#24 iac
SWB I & II faa
U-4151 sui
AFSR-129 af
SFP-1037 af
ACTIVITIES AND PROJECTS

Unit I

1. Work with E6-B Computer and Mark II Plotter to learn how these instruments are used by a pilot or navigator.

2. Reports on various types of aeronautical charts.

3. Study the use of a sextent and how it is used in celestial navigation.

4. Field trip to FAA VOR site for orientation on how Omni operates.

5. Report on occupations and vocations in the navigation area.

Unit II

1. Obtain, or construct, weather recording instruments and make daily observations.

2. Observe daily cloud formations, wind directions, and estimate cloud cover and ceiling.

3. Study weather bureau maps and reports to learn symbols and coding and to make local forecasts.

4. Field trip to Weather Bureau, Des Moines Municipal Airport.

OCCUPATIONAL AREAS - CHAPTER IV

Unit I

Astronomer 021.088
Cartographer 017.281
Electronics Engineer 003.061
Electronic Technician 003.181
Navigator 196.188

Unit II
Mathematician 020.088
Physicist 023.081 & .088
Meteorologist 025.088

SOURCES OF OCCUPATIONAL INFORMATION

Unit I
Aircraft Electronics Ass'n., Inc., 6310 Gen. Twining Ave.,
Airgate Station, Sarasota, Florida 33580.
American Society For Engineering Education, 1346 Connecticut
Ave., N.W., Washington, D.C. 20036.
Air Line Navigators Council, TWU-CIO, 9574 Lake Shore Blvd.,
Seattle, Washington.
... also see "Sources," Chapter I.

Unit II
American Meteorological Society, 45 Beacon St., Boston,
Massachusetts 02108.
Department of Commerce, Weather Bureau, Washington, D.C.
... also see "Sources," Chapter I.

FREE OR INEXPENSIVE MATERIALS

Unit I
You And Your VOR (free) faa
Map Projections For Modern Charting (free) dpc
VOR & DME, Dead Reckoning, Area Charts, ADF & L/MF, IFR Approaches (plastic references @ $1.95 each)
You And Your Radio (free)
Flight--The Story Of Electronic Navigation (free)

Unit II
What's The Weather? (free)
Aviation Weather Series (18 pamphlets @ .05¢ ea.)
Flying And Weather (.10¢)
Field Service Digest #48 (free)
Key To Aviation Weather Forecasts (.05¢)
(Also at local Weather Bureau-free)
Pilots Weather (free)
How To Forecast The Weather (free)
Cloud Chart (free)
Weather Bureau Activities (free)
The Upper Atmosphere--chart (free)
Air Pressure--chart (free)
CHAPTER FIVE

Unit I Air Traffic Control & Communications

A. Air Terminal Problems
 1. Local Traffic
 2. Airlines
 3. Enroute Traffic
 a) Air Route Traffic Control Center (ARTC)
 4. High Speed Aircraft
 5. Low Speed Aircraft

B. Aircraft Communications
 1. Radio Telephone Procedures
 a) Phonetic Alphabet
 b) Statement of Time
 c) Procedure Words and Phrases

C. Control Tower
 1. Radio Frequencies--Transmitting-Receiving
 2. Responsibilities
 a) Landing & Departing Aircraft
 b) Aircraft Entering Traffic Pattern
 c) Landing Sequencing
 d) Ground Control (Taxiing)
 e) Advisory Information (Weather)
D. Non Control Tower Airports
 1. Flight Service Station Advisories
 2. Local Airport Advisories (UNICOM)

E. Air Traffic Service
 1. Controlled Airspace
 a) Control Zone
 b) Control Area
 c) Air Lanes
 d) Visual Flight Regulations (VFR)
 e) Instrument Flight Regulations (IFR)
 2. Flight Plans
 a) Visual Flight Plans (VFR)
 b) Instrument Flight Plans (IFR)
 3. Air Route Traffic Control Center (ARTC)
 a) IFR Flight Plans
 (1) Flight Level
 (2) Airplane Separation
 b) Towers
 (1) Approach--Departure Control
 (2) Radar Service
 c) Flight Service Stations
 (1) Preflight Weather
 (2) Inflight Weather
 (3) Local and Area Weather
Unit II The Department of Transportation—Federal Aviation Agency (FAA)

A. Government Regulations
 1. C.A.A. Acts of 1938 and 1940
 2. Model Aviation Act of 1944
 3. F.A.A. Act of 1958
 4. International Civil Aviation Org. (ICAO)

B. Functions of the F.A.A.
 1. Civil Aeronautics Board (CAB)
 2. Controlling Air Traffic
 3. Provide Ground Facilities
 4. Determine Pilot and Aircraft Qualifications and Standards
 5. Research and Development

C. Organization
 1. Administrator
 2. Deputy Administrator
 3. Associate Administrators

D. Federal Aviation Regulations
 1. Subchapter A Definitions
 a) Part 1—Definitions and Abbreviations
 2. Subchapter B Procedural Rules
 a) Part 11—General Rule-Making Procedures
 b) Part 13—Enforcement Procedures
3. Subchapter C Aircraft
 a) Part 21--Aircraft Certification
 b) Part 23--Airworthiness Standards, Normal, Utility, and Aerobatic
 c) Part 25--Airworthiness Standards, Transport Category
 d) Part 27--Airworthiness Standards, Rotorcraft
 e) Part 29--Airworthiness Standards, Transport Rotorcraft
 f) Part 33--Airworthiness Standards, Engines
 g) Part 35--Airworthiness Standards, Propellers
 h) Part 37--Technical Standard Orders, Materials, Parts, Appliances
 i) Part 39--Airworthiness Directives
 j) Part 41--Airworthiness Operating and Equipment Standards
 k) Part 43--Maintenance and Alteration
 l) Part 45--Identification and Registration

4. Subchapter D Airmen
 a) Part 61--Certification, Pilots, Instructors
 b) Part 63--Flight Crew Other Than Pilots
 c) Part 65--Certification Other Than Flight Crew
 d) Part 67--Medical Standards and Certification
5. Subchapter E Airspace
 a) Part 71--Federal Airways, Controlled Airspace, Reporting Points
 b) Part 73--Special Use Airspace
 c) Part 75--Establishment of Jet Routes
 d) Part 77--Construction or Alteration Affecting Airspace

6. Subchapter F Air Traffic and General Operating Rules
 a) Part 91--General Operating and Flight Rules
 b) Part 93--Special Air Traffic Rules and Airport Traffic Patterns
 c) Part 95--IFR Altitudes
 d) Part 97--Standard Instrument Approaches
 e) Part 99--Security Control of Air Traffic
 f) Part 103--Transportation of Dangerous Articles and Magnetized Materials
 g) Part 105--Parachute Jumping

7. Subchapter H Schools and Other Certificated Agencies
 a) Part 141--Pilot Schools
 b) Part 143--Ground Instructors
 c) Part 145--Repair Stations
 d) Part 147--Mechanic Schools
 e) Part 149--Parachute Lofts
8. Subchapter I Airports
 a) Part 151--Federal Aid to Airports
 b) Part 153--Acquisition of U.S. Land for Public Airports
 c) Part 155--Release of Airport Property From Surplus Property Disposal Regulations
 d) Part 157--Construction, Alteration, Deactivation of Airports
 e) Part 159--National Capital Airports
 f) Part 161--Cold Bay, Alaska Airport
 g) Part 163--Canton Island, Airport
 h) Part 165--Wake Island, Airport

9. Subchapter K Administrative Regulations
 a) Part 181--Seal
 b) Part 183--Representatives of The Administrator
 c) Part 185--Testimony at Legal Proceedings
 d) Part 187--Copying and Certifying Fees For FAA Records
 e) Part 189--Use of FAA Communications

E. Pilot Regulations
 1. Age For Rating
 2. Physical Examination
 3. Written Knowledge
 4. Flight Instruction
5. Solo Flight(s)
6. Practical Examination (Check Ride)

F. Air Traffic Rules
1. Controlled Airspace
2. Non-Controlled Airspace
CHAPTER V ENRICHMENT AND TEACHER AIDS

SELECTED READINGS

Unit I

Unit II

SELECTIONS FROM PERIODICALS

Unit I

William J. Kendall. "New Concept In Air Traffic Control," Flying (December, 1963), 44.

Gene Wilson. "Do You Read Me?" Air Facts (June, 1966), 44.

Unit II

FILM SUGGESTIONS

Unit I

A Traveler Meets Air Traffic Control
Flying Follies (Parts 1, 2, and 3) #102 faa
Ground Control Approach TF 1-4038 af
Ground Safety On The Flight Line #35 iac
ILS, Instrument Landing System TF 1-5047b af
Operation Zero, Zero TF 1-5016 af
Private Pilot FR 35 af

#211 faa
ACTIVITIES AND PROJECTS

Unit I
1. Report on air communications procedures.
2. A simulated conversation between a plane in flight and a tower controller.
3. Field trip to Des Moines Municipal Airport Control Tower, Radar Room, and FAA Flight Service Station.

Unit II
1. Obtain a speaker from the FAA to talk on the function of the FAA.
2. Obtain a speaker from the Iowa Aeronautics Commission to speak on the function of the IAC.
4. Report on careers with the FAA and CAB.
Unit I and Unit II

The Federal Aviation Agency, Department of Transportation, employs nearly 40,000 people. The job titles and requirements are much the same as found in the Air Transport, General Aviation, and Electronic areas of the aerospace industries. One of the many, and principal, functions of the FAA is the certification of airworthiness capabilities of aircraft design, production, and utilization. Engineering and trades people are used for consultation and inspection in the plant and in the field to ascertain that design specifications, production methods, and modifications or repairs meet or exceed specified standards. The CAB (Civil Aeronautics Board) besides regulating commercial air carriers also is entrusted with the duty of examining all airplane accidents to determine the cause. The CAB personnel are experts in various areas of airplane construction such as control systems, hydraulic systems, metal and structural work, etc.

Air Traffic Control is the largest department of the FAA and the following job titles come under this area:

<table>
<thead>
<tr>
<th>Job Title</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tower Controllers</td>
<td>193.168</td>
</tr>
<tr>
<td>Approach Controllers</td>
<td>193.168</td>
</tr>
<tr>
<td>Departure Controllers</td>
<td>193.168</td>
</tr>
<tr>
<td>Ground Controllers</td>
<td>198.168</td>
</tr>
<tr>
<td>Air Route Center Controllers</td>
<td>193.168</td>
</tr>
</tbody>
</table>
In addition to the aforementioned titles the following selected job titles will give some indication to the diversity of occupations in the FAA.

Information & Editorial
Safety Management
Urban Planning
Chaplain
Security Administration
Social Science
Economist
Historian
Psychologist
General Anthropology
Composing Machine Operator
Computer Systems Adm.
Computer Programming
Cryptographic Eqpt. Operator
Communications Specialist
Biologist
Pharmacologist
Horticulturist
Accountant
Nurse
Medical Technologist
Electrocardiograph Tech.
Dental Officer
Industrial Hygienist
Cartographer
Engineering Draftsman
Electronic Engineer
Aerospace Engineer
Attorney
Illustrator
Photographer
Audio Visual Production
Realty Acquisition
Physicist
Chemist
Meteorologist
Navigational Specialist
Mathematician

132.038
168.264
054.088
120.108
169.168
054.088
050.088
052.088
045.088
055.088
650.582
020.168
020.188
208.588
822.281
041.081
041.081
041.081
160.188
075.478
076.168 & .381
078.368
072.108
078.368
017.281
002.281
003.361
002.281
110.108
141.081
143.062 & .382
099.168
186.118
023.081 & .088
022.081
025.088
196.188
029.088
Aviation Safety Officer 620.281
621.281 & .381 & .781
693.281
769.281
801.381
825.381
862.381
Traffic Management
Aircraft Operations (Pilot) 019.188
196.283

Supplementing this list are many administrative titles which are higher levels of the titles listed. There are also the usual clerical titles found in office work.

SOURCES OF OCCUPATIONAL INFORMATION

Air Traffic Conference of America, 1000 Connecticut Ave.,
N.W., Washington, D.C. 20036.

Air Traffic Control Association, Suite 409, ARBA Bldg.,
525 School St., S.W., Washington, D.C. 20024.

Aircraft Mechanics Fraternal Association, 134-02 Jamaica Ave., Jamaica, New York 11418.

Airlines Communications Administrative Council, % Aeronautical Radio, Inc., 2551 Riva Rd., Annapolis, Maryland 21401.

Airlines Medical Directors Association, % George F. Catlett, M.D., United Air Lines, Inc., John F. Kennedy International Airport, Jamaica, New York 11430.

Airport Operators Council International, Inc., 1700 K St.,

American Association of Airport Executives, P.O. Box 767,
Greater Wilmington Airport, Wilmington, Delaware.

... also see "Sources," Chapter I.
FREE OR INEXPENSIVE MATERIALS

Unit I
Some ABC's Of Air Traffic Management (free)
Glossary Of Air Traffic Control Terms (free)
The Control Tower (free)
Flight (free)
General Description--ARTS-Radar Traffic Control System (free)
In These Hands (free)
The Story of Safety In The Sky (free)
Air Traffic Patterns and Community Characteristics (.35¢)

Unit II
A Picture Story of The FAA In Action
For You (free)
FAA--What It Is-What It Does (free)
FAA Glossary (free)
The Flight Service Station (free)
The Federal Aviation Agency (.25¢)
Federal Air Regulations (write for price list)
CHAPTER SIX

Unit I Space Travel

A. The Solar System
 1. The Sun
 2. The Planets
 3. Other Bodies
 a) Asteroids, Comets, Meteorites

B. Earth's Atmosphere
 1. Divisions Of Atmosphere and Space

C. History of Rockets
 1. China
 2. Europe
 3. Asia
 4. United States
 5. Dr. Robert Goddard
 6. Hermann Oberth
 7. Walter Hohmann
 8. Walter Dornberger
 9. Werner Von Braun

D. Origins of Astronautics

E. The Motion of Bodies in Space
 1. Newton's Laws
 2. The Laws of Planetary Motion
3. Motion
4. Perturbations
5. Free Fall
F. The Rocket
 1. Rocket Operation
 2. Rockets and the Laws of Motion
 3. Rockets--Jets
 4. Rockets--Missiles
G. Space Problems
 1. Propulsion Systems
 a) Solid Fuel
 b) Liquid Fuel
 c) Nuclear Power
 d) Photon Power
 e) Ion Power
 f) Plasma Engine
 g) Propellant Problems
 h) Engine Power Ratings
 (1) Thrust
 (2) Specific Impulse
 (3) Exhaust Velocity
 (4) Mass Ratio
2. Accurate Guidance Systems
 a) Pre-Set
 b) Command
 c) Target Seeking
 d) Inertial
 e) Celestial

3. Spacecraft Design
 a) Aerodynamically
 b) Ballistically
 c) Strength

4. Environmental
 a) Acceleration
 b) Weightlessness
 c) Physical Needs
 d) Radiation

5. Reentry
 a) Deceleration
 b) Heat-Cooling
 c) Glide-Parachute Braking
Unit II Unmanned Space Exploration

A. Purposes

1. Quest For Knowledge

2. Peaceful Uses

 a) Joint International Ventures

 (1) Geophysical Year

3. National Security--Prestige

B. Current Activities

1. Mariner

2. Surveyor

3. "Fly-Bys"
Unit III Manned Exploration

A. Projects
 1. X-15 Rocket Plane
 2. Project Mercury
 3. Project Gemini
 4. Project Apollo

B. Peaceful Application of Space Research
 1. Communications
 2. Weather
 3. Consumer Goods
CHAPTER VI ENRICHMENT AND TEACHER AIDS

SELECTED READINGS

Unit I, Unit II, and Unit III

SELECTIONS FROM PERIODICALS

The following periodicals are devoted to current topics on space manufacturing, space technology, and space exploration:

* Aviation Week and Space Technology (weekly) *
* NASA Notes (monthly) *
* Space Digest (monthly) *

Company journals of member companies of the Aerospace Industries Association contain much information and may be obtained and the writer's name placed on the mailing list when so requested.

FILM SUGGESTIONS

Unit I, Unit II, and Unit III

America In Space HQ-103 nasa
Aviation Medicine U-4164 sui
Background of Rocketry 288 net
Beating The Heat HQ-1 nasa
Eternal Day--Eternal Night 1366 net
Exobiological Safety
How Did Life Begin?
Inertial Guidance
Life On Other Planets
Life On Other Worlds
Man In Space
Mastery Of Space
Principles of Inertial Navigation
Project Apollo--Manned Flight
To The Moon
Rocket Club
Space For the Benefit Of Mankind
Space Guidance and Control
Space Navigation
Survey Of Astronautics
The Unseen Burden
The Airman's World--Man In Flight
The Airman's World--Aerospace Medicine

ACTIVITIES AND PROJECTS

Unit I, Unit II, and Unit III

1. Obtain a speaker from the McDonald Corp., St. Louis, Missouri, builder of the Mercury and Gemini capsules.

2. Obtain a speaker from the U. S. Air Force to talk on "Space And The National Security."
3. Build and launch model rockets of one, two, or three stages and compute altitude and trajectory.

4. Reports on various guidance systems used in rockets and missiles.

5. Field trips to N. W. Bell telephone Co. to observe operation of micro-wave equipment, Collins Radio in Cedar Rapids, Iowa, and Bendix Corp., Instruments and Life Support Division, Davenport, Iowa.

6. Reports on the career fields in aerospace industries and aerospace support industries.

OCCUPATIONAL AREAS - CHAPTER VI

Unit I, Unit II, and Unit III

Degreed and non-degreed occupations in spacecraft and missile design, development, and manufacturing are essentially those listed under "Occupational Areas," in Chapter I. However, scientists and technologists employed by the National Aeronautics and Space Administration (NASA) find themselves in a somewhat unique situation. Job titles in NASA reflect the highly specialized nature of aerospace technology. It is next to impossible for NASA to obtain college, or technical school, trained graduates to fill specialty positions as the need for these positions change as rapidly as the frontiers of aerospace technology change. Thus it would not be practical for colleges and technical schools to establish curriculums for these specialties. NASA personnel bulletins point out personnel are selected on the basis of solid backgrounds
in the fundamental sciences or technical areas. The individual is then "fitted" to a specialized position within their background training.

NASA science and technical areas and specialized positions are listed below:

Space Sciences
- Aeronomy
- Ionospherics
- Field and Particles
- Stellar Studies
- Lunar and Planetary Studies
- Meteoroid Studies
- Solar Studies

Fluid and Flight Mechanics
- Flight Mechanics
- Control and Guidance Systems
- Fluid Mechanics
- Magnetofluiddynamics
- Aerostructural Dynamics
- Flight Vehicle Acoustics
- Heat Transfer
- Stability, Control Performance
- Flight Vehicle Atmosphere Environment
- Basic Properties of Gases

Materials and Structures
- Materials
- Structural Materials
- Aerospace Metals
- Basic Properties of Materials
- Aerospace Polymers
- Refractory Compounds
- Friction and Lubrication
- Structural Mechanics
- Flight Structures
Propulsion Systems

Liquid Propulsion Systems
Solid Propulsion Systems
Electrical Propulsion and Power
Direct Energy Conversion
Nuclear Energy Processes
Nuclear Propulsion and Power
Chemical Energy Processes
Internal Flow Dynamics

Flight Systems

Reliability
Flight Systems Test
Experimental Manufacturing Techniques
Quality Assurance
Electrical Systems
Manned Space Flight Systems

Measurement and Instrumentation Systems

Sensors and Transducers
Space Optics
Measurement Standards and Calibration
Control Systems
Tracking and Telemetry Systems
Antennas
Telemetry Systems
Tracking Systems
Telem-Communications
Electronics of Materials

Data Systems

Data Analysis
Data Equipment
Theoretical Simulation

Experimental Facilities and Equipment

Launch and Flight Operations
Experimental Tooling and Equipment
Fluid and Flow Systems
Electrical Experimental Equipment
Experimental Facilities Techniques
Nuclear Experimental Techniques

Management

Program Management
Project Management
Technical Management
Technology Utilization

Research Piloting

Spacecraft (Astronaut)
Sub-Space (X-15)

Life Studies

Biochemical Processes
Psychological Studies
Plant Studies
Physiological Studies
Molecular Biodynamics
Radiobiological Studies
Neurobiology

Exobiology

Chemical Evolution
Biological Adaptation
Life Detection Systems

Man-Machine Systems

Environmental Physiology
Human Performance Studies
Environmental Control
Manned Systems Engineering Studies
Bionics Studies
Preferred College Majors for NASA Personnel

Astronautics
Astronomy
Ceramics
Chemistry
Electronics
Geology
Geophysics
Mathematics
Metallurgy
Meteorology
Physics
Architecture

Aeronautical Engineering
Ceramic Engineering
Chemical Engineering
Civil Engineering
Electronic Engineering
Electrical Engineering
Industrial Engineering
Mechanical Engineering
Metallurgical Engineering
Nuclear Engineering
Engineering Mechanics
Engineering Physics

SOURCES OF OCCUPATIONAL INFORMATION

Aerojet-General Corp., Public Relations Dept., P.O. Box 3925, Glendale, California.

Aerospace Corp., Office of Public Information, P.O. Box 95085, Los Angeles, California 90045.

Aerospace Industries Association of America, Inc., 1725 De Sales St., N.W., Washington 20036.

The American Society of Mechanical Engineers, Aviation and Space Division, 345 E. 47th St., New York City, New York 10017.

National Aeronautics and Space Administration, Educational Publications, APEE, Washington, D.C. 20546.

... also see "Sources," Chapter I.
FREE OR INEXPENSIVE MATERIALS

Unit I

NASA Facts (free)
The Man Behind The Rocket (free)
Can You Talk The Language Of Space? (free)
Lifting Re-Entry Spacecraft (free)
Space--The New Frontier (free)
Space Travel Computer (free)
Space Vehicle Design Computer (free)
Aerospace Navigation (free)
Inertial Guidance (free)
Missiles--From Concept To Countdown (free)
Advanced Research (free)
NASA Installations (free)
NASA Photography (free)
A World In Space (.15¢)
Space Handbook: Astronautics and Its Application (free)
Model Rocketry (.50¢)
Life Sciences For Space Use--chart (free)
Aerospace Medicine (free)
Pressure Suits (free)
Space Medicine (free)
Feeding The Astronaut In Flight (free)
Aerospace Nursing (free)
Bibliography--Space Medicine (free)
The National Significance Of The Augmented Program Of Space Exploration (free)
The Mission Of Man In Space (free)
Educational Packet--Model Rocketry (free)
Ballistics Manual (.75¢)

Unit II
The Peaceful Uses Of Space (free)
The Practical Value Of Space Exploration (.30¢)
Orbiting Geophysical Laboratory (free)
Satellites For Commerce and Defense (free)
Complete Set Of All Unmanned Satellites (free)

Unit III
The Challenge Of Space Exploration (free)
Exploring Space (free)
Space Tools (free)
Space--Challenge and Promise (free)
Beyond Apollo (free)
A Walk In Space (free)
The Biggest Thing On Wheels (free)
Footprints On The Moon (free)
Apollo/Saturn (free)

Project Apollo ($1.00)

One, Two, Three, and The Moon (free)

Speaking Of Space And Aeronautics (free)

Manned Space Flight--chart (.20¢)

Astrolog (free)

Celestial Mechanics (free)

The Mission Of Man In Space (free)

Freedom In Space (free)

AC Electronics is "Go" For Apollo (free)

AVCO/RAD Builds The Apollo Ablative Heat Shield (free)

Spacecraft (free)
APPENDIX A

ENGINEERING, TECHNICAL, AND TRADE SCHOOLS

Because of the many schools in the United States offering education in engineering, technical arts, and trades only schools in Iowa and the immediate bordering states (South Dakota, Minnesota, Wisconsin, Illinois, Missouri, Kansas, and Nebraska) are listed. However, some specialty vocations may have but a few schools offering training and these schools will be listed.

Aeronautical Administrator (degree)

- Parks College, St. Louis University, St. Louis, Missouri
- University of Minnesota, Minneapolis, Minnesota

Aeronautical Draftsman (non degree)

- Aero University, Chicago, Illinois

Aerospace Engineer (degree)

- Aerospace Institute, Chicago, Illinois
- Illinois Institute of Technology, Chicago, Illinois
- University of Illinois, Urbana, Illinois
- Iowa State University, Ames, Iowa
- State University of Iowa, Iowa City, Iowa
- St. Benedict's College, Atchison, Kansas
- Kansas University, Lawrence, Kansas
- Wichita State University, Wichita, Kansas
- University of Minnesota, Minneapolis, Minnesota
- Parks College, St. Louis University, St. Louis, Missouri
- Washington University, St. Louis, Missouri
Aerospace Engineering Technician (non degree)

Aero Space Institute, Chicago, Illinois
Aero University, Chicago, Illinois
St. Bede Jr. College, Peru, Illinois
Grand View Jr. College, Des Moines, Iowa
Central Iowa Community College, Ft. Dodge, Iowa
Pratt Jr. College, Pratt, Kansas
Wichita Drafting College, Wichita, Kansas
Brainerd Jr. College, Brainerd, Minnesota
Eveleth Jr. College, Eveleth, Minnesota
St. Louis University, St. Louis, Missouri (degree)
Fairbury Jr. College, Fairbury, Nebraska
Wayne State College, Wayne, Nebraska

Airplane Mechanic

University of Illinois Institute of Aviation, Urbana, Ill.
Minneapolis Technical Institute, Minneapolis, Minnesota
Aero Mechanic School, Kansas City, Missouri
Parks College, St. Louis University, St. Louis, Missouri
Lincoln Aviation Institute, Lincoln, Nebraska
Janesville Vocational School, Janesville, Wisconsin

Air Traffic Agent and Reservationist

There are many schools offering this type of training however, most airlines prefer to train their own employees for this work.

Astronautics Engineer (degree)

Polytechnic Institute of Brooklyn, Brooklyn, New York

Astronomer (degree)

Chicago University, Chicago, Illinois
Iowa State University, Ames, Iowa
Kansas University, Lawrence, Kansas
University of Missouri
University of Minnesota, Minneapolis, Minnesota
Carlton College, Northfield, Minnesota
University of Wisconsin, Madison, Wisconsin
Cartographer (degree)

Northwestern University, Evanston, Illinois
Beloit College, Beloit, Wisconsin
University of Wisconsin, Madison, Wisconsin
Carroll College, Waukesha, Wisconsin

Ceramic Engineer (degree)

University of Illinois, Urbana, Illinois
Iowa State University, Ames, Iowa
University of Missouri at Rolla, Rolla, Missouri
Washington University, St. Louis, Missouri
Marquette University, Milwaukee, Wisconsin

Ceramic Engineer Technician (non degree)

Grand Rapids Jr. College, Grand Rapids, Michigan
Ohio University, Athens, Ohio (degree)
Ohio College of Applied Sciences, Cincinnati, Ohio

Chemical Engineer (degree)

Illinois Institute of Technology, Chicago, Illinois
Iowa State University, Ames, Iowa
State University of Iowa, Iowa City, Iowa
St. Benedict's College, Achison, Kansas
Kansas University, Lawrence, Kansas
Kansas State University, Manhattan, Kansas
University of Minnesota, Minneapolis, Minnesota
Missouri University, Columbia, Missouri
Northeast Missouri State College, Kirksville, Missouri
University of Missouri at Rolla, Rolla, Missouri
Washington University, St. Louis, Missouri
University of Nebraska, Lincoln, Nebraska
South Dakota School of Mines, Rapid City, South Dakota
University of Wisconsin, Madison, Wisconsin
Chemical Engineering Technician (non degree)

Danville Jr. College, Danville, Illinois
Grandview Jr. College, Des Moines, Iowa
Central Iowa Community College, Ft. Dodge, Iowa
Area VI Community College, Marshalltown, Iowa
Iowa State University Technical Institute, Ames, Iowa
Brainerd Jr. College, Brainerd, Minnesota
Eveleth Jr. College, Eveleth, Minnesota
Rochester Jr. College, Rochester, Minnesota
Evangel College, Springfield, Missouri (degree)
McCook Jr. College, McCook, Nebraska
Milwaukee School of Engineering, Milwaukee, Wisconsin

Chemical Technologist (non degree)

Lowell Technical Institute, Lowell, Massachusetts

Chemist (degree)

Southern Illinois University, Carbondale, Illinois
University of Illinois, Urbana, Illinois
Bradley University, Peoria, Illinois
Northwestern University, Evanston, Illinois
Knox College, Galesburg, Illinois
Kansas State College, Emporia, Kansas
Wichita State University, Wichita, Kansas
University of Minnesota, Minneapolis, Minnesota
Hamline University, St. Paul, Minnesota
University of Missouri at Rolla, Rolla, Missouri
University of Missouri at Kansas City, Kansas City, Mo.
University of Nebraska, Lincoln, Nebraska
Iowa State University, Ames, Iowa
State University of Iowa, Iowa City, Iowa
Drake University, Des Moines, Iowa
South Dakota State University, Vermillion, South Dakota
University of Wisconsin, Madison, Wisconsin
Marquette University, Milwaukee, Wisconsin
. . . and many others in each of the states named
Communications Agent (non degree)
Central Iowa Community College, Ft. Dodge, Iowa
Milwaukee Vocational School, Milwaukee, Wisconsin

Communications Engineer (degree)
Southern Illinois University, Carbondale, Illinois
University of Illinois, Urbana, Illinois
Iowa State University, Ames, Iowa
Washington University, St. Louis, Missouri
University of Minnesota, Minneapolis, Minnesota
University of Wisconsin, Madison, Wisconsin

Communications Engineering Technician (non degree)
DeVry Technical Institute, Chicago, Illinois
Central Iowa Community College, Ft. Dodge, Iowa
Wichita Technical Institute, Wichita, Kansas
Electronic Institute, Kansas City, Missouri
Fairbury Jr. College, Fairbury, Nebraska
Wisconsin State College, Superior, Wisconsin
Northwestern Electronics Inst., Minneapolis, Minnesota

Computer Programmer (non degree)
Central Technical Institute, Kansas City, Missouri
Area X Vocational School, Cedar Rapids, Iowa
Area XI Vocational School, Ankeny, Iowa
Alverno College, Alverno, Wisconsin

Computer Technician (non degree)
Area XI Vocational School, Ankeny, Iowa
Area XV Vocational School, Ottumwa, Iowa
Milwaukee School of Engineering, Milwaukee, Wisconsin
Data Processor (non degree)

Southern Illinois University, Carbondale, Illinois
Computer Schools, Chicago, Illinois
College of Automation, Des Moines, Iowa
Area XI Vocational School, Ankeny, Iowa
Area XV Vocational School, Ottumwa, Iowa
Wichita Drafting College, Wichita, Kansas
Central Technical Institute, Kansas City, Missouri
Nebraska Technical School, Milford, Nebraska
Wisconsin State College, Whitewater, Wisconsin (degree)

Draftsman (Electronics)

Chicago Technical College, Chicago, Illinois
Central Technical Institute, Kansas City, Missouri
Milwaukee School of Engineering, Milwaukee, Wisconsin

Electrical Engineer (degree)

Illinois Institute of Technology, Chicago, Illinois
University of Illinois, Urbana, Illinois
Bradley University, Peoria, Illinois
Iowa State University, Ames, Iowa
State University of Iowa, Iowa City, Iowa
University of Kansas, Lawrence, Kansas
Kansas State University, Manhattan, Kansas
Wichita State University, Wichita, Kansas
University of Minnesota, Minneapolis, Minnesota
University of Missouri, Columbia, Missouri
University of Missouri at Rolla, Rolla, Missouri
St. Louis University, St. Louis, Missouri
Washington University, St. Louis, Missouri
University of Nebraska, Lincoln, Nebraska
South Dakota State College, Brookings, South Dakota
University of Wisconsin, Madison, Wisconsin
Marquette University, Milwaukee, Wisconsin
Electrical Engineering Technician (non degree)

Danville Jr. College, Danville, Illinois
Black Hawk Jr. College, Moline, Illinois
Iowa State University Technical Institute, Ames, Iowa
Central Iowa Community College, Ft. Dodge, Iowa
Wichita Drafting College, Wichita, Kansas
Dunwoody Institute, Minneapolis, Minnesota
Winona State College, Winona, Minnesota
Missouri Technical School, St. Louis, Missouri
Peru State College, Peru, Nebraska
Wayne State College, Wayne, Nebraska
Wisconsin State College, Superior, Wisconsin

Electronics Engineer (degree)

Industrial Engineering School, Chicago, Illinois
Iowa State University, Ames, Iowa
University of Minnesota, Minneapolis, Minnesota
University of Missouri at Kansas City, Kansas City, Mo.
South Dakota State College, Brookings, South Dakota
University of Wisconsin, Madison, Wisconsin

Electronics Engineering Technician (non degree)

Southern Illinois University, Carbondale, Illinois
 DeVry Technical Institute, Chicago, Illinois
United Electronics Institute, West Des Moines, Iowa
Iowa State University Technical Institute, Ames, Iowa
Central Iowa Community College, Ft. Dodge, Iowa
North Iowa Community College, Mason City, Iowa
Area VI Vocational School, Marshalltown, Iowa
Area VII Vocational School, Waterloo, Iowa
Area IX Community College, Clinton, Iowa
Area X Vocational School, Cedar Rapids, Iowa
Area XI Vocational School, Ankeny, Iowa
Area XII Vocational School, Sioux City, Iowa
Area XV Vocational School, Ottumwa, Iowa
Area XVI Vocational School, Burlington, Iowa
Wichita Technical Institute, Wichita, Kansas
Brown Institute of Electronics, Minneapolis, Minnesota
Dunwoody Institute, Minneapolis, Minnesota
Midwest School of Electronics, Omaha, Nebraska
Central Technical Institute, Kansas City, Missouri
South Dakota Vocational Technical School, Springfield, S.D.
Milwaukee School of Engineering Technology,
Milwaukee, Wisconsin (degree)

Electroplater (non degree)

Illinois Institute of Technology, Chicago, Illinois
Purdue University Extension, Indianapolis, Indiana

Flight Training

Aerospace Technical Institute (flight, maintenance, and
air transport technology), affiliated with Florida
Institute of Technology, Melbourne, Florida

Ag Aviation Academy (commercial, instrument, instructor,
airline transport, helicopter, and agriculture pilot
ratings), Stead Airport, Reno, Nevada

American Flyers, Inc. (B.S. in Aviation, also commercial
multi-engine, airline transport, helicopter, and instrument ratings), Ardmore Airpark, Ardmore, Oklahoma

Burnside-Ott Aviation Training Center (private, commer-
cial, airline transport, instrument, multi-engine,
instructor, and helicopter ratings), Opa Locka Airport,
Miami, Florida

Embry-Riddle Aeronautical Institute (B.S. in Aeronautical
Engineering and Airport Management, also private,
commercial, airline transport and instrument ratings),
Daytona Beach, Florida

Hawthorne College (B.S. in Aviation and Flying), Antrim,
New Hampshire

Northrop Institute of Technology (B.S. in Aerospace,
Electronics, and Mechanical Engineering, also flight
training and aviation mechanics), Inglewood, California

Spartan School of Aeronautics (all pilot ratings and
aviation mechanics), International Airport, Tulsa, Okla.

Institute of Aviation, University of Illinois (pilot and
mechanic ratings), Urbana, Illinois

Southern Illinois Air Institute, Southern Illinois
University (pilot ratings), Carbondale, Illinois

Purdue University Dept. of Aviation Technology (B.S. in
Professional Pilot also commercial and airline trans-
port flight ratings), West Lafayette, Indiana

Ohio State University School of Aviation (pilot and
mechanic ratings), Columbus, Ohio
Machinist (non degree)

Southern Illinois University, Carbondale, Illinois
Allied School of Mechanical Trades, Chicago, Illinois
Bradley University, Peoria, Illinois
Dodge City Jr. College, Dodge City, Kansas
Minneapolis Technical Institute, Minneapolis, Minnesota
Rankin School of Mechanics, St. Louis, Missouri
Nebraska Technical School, Milford, Nebraska
South Dakota Vocational Technical School, Springfield, S.D.
Milwaukee Vocational School, Milwaukee, Wisconsin

Mechanical Engineer (degree)

Bradley University, Peoria, Illinois
University of Illinois, Urbana, Illinois
Iowa State University, Ames, Iowa
State University of Iowa, Iowa City, Iowa
University of Kansas, Lawrence, Kansas
University of Minnesota, Minneapolis, Minnesota
University of Missouri, Columbia, Missouri
University of Missouri at Rolla, Rolla, Missouri
University of Nebraska, Lincoln, Nebraska
South Dakota State College, Brookings, South Dakota
University of Wisconsin, Madison, Wisconsin
Marquette University, Milwaukee, Wisconsin
... and many others in each of the states named.

Mechanical Engineering Technician (non degree)

Allied School of Mechanical Trades, Chicago, Illinois
Iowa State University Technical Institute, Ames, Iowa
Dunwoody Institute, Minneapolis, Minnesota
Nebraska State Technical College, Wayne, Nebraska
Milwaukee School of Engineering, Milwaukee, Wisconsin
Area VI Vocational School, Marshalltown, Iowa
Area VII Vocational School, Waterloo, Iowa
Area X Vocational School, Cedar Rapids, Iowa
... and many others in each of the states named.
Metallurgical Engineer (degree)

Illinois Institute of Technology, Chicago, Illinois
Chicago University, Chicago, Illinois
University of Illinois, Urbana, Illinois
Iowa State University, Ames, Iowa
University of Minnesota, Minneapolis, Minnesota
University of Missouri at Rolla, Rolla, Missouri
University of Wisconsin, Madison, Wisconsin

Metallurgical Engineering Technician (non degree)

Chicago City Jr. College, Chicago, Illinois
Central Iowa Community College, Ft. Dodge, Iowa
Highland Jr. College, Highland, Kansas
Milwaukee School of Engineering, Milwaukee, Wisconsin

Meteorologist and Climatologist (degree)

Chicago University, Chicago, Illinois
St. Louis University, St. Louis, Missouri
University of Missouri, Columbia, Missouri
Iowa State University, Ames, Iowa
University of Minnesota, Minneapolis, Minnesota
University of Wisconsin, Madison, Wisconsin

Missile Rocket Technician (non degree)

American Jet School, Inc., Michigan City, Indiana

Nuclear Engineer (degree)

University of Illinois, Urbana, Illinois
Iowa State University, Ames, Iowa
University of Minnesota, Minneapolis, Minnesota
University of Missouri at Rolla, Rolla, Missouri
Washington University, St. Louis, Missouri
University of Wisconsin, Madison, Wisconsin
Nuclear Physicist (degree)

University of Illinois, Urbana, Illinois
Northwestern University, Evanston, Illinois
Iowa State University, Ames, Iowa
State University of Iowa, Iowa City, Iowa
University of Minnesota, Minneapolis, Minnesota
Washington University, St. Louis, Missouri
South Dakota State College, Brookings, South Dakota
University of Wisconsin, Madison, Wisconsin
Lawrence College, Lawrence, Wisconsin

Sheet Metal Worker (non degree)

Dunwoody Institute, Minneapolis, Minnesota
Northern State College, Aberdeen, South Dakota
Milwaukee Vocational School, Milwaukee, Wisconsin

Steward and Stewardess (Airline--non degree)

There are many schools offering this type of training
however, most airlines prefer to train their own
employees for this work.

Tool and Die Designer (non degree)

Southern Illinois University, Carbondale, Illinois
American Technical School, Chicago, Illinois
Dunwoody Institute, Minneapolis, Minnesota
Hankin School of Mechanics, St. Louis, Missouri
Nebraska Technical School, Milford, Nebraska
Milwaukee Vocational School, Milwaukee, Wisconsin

Welder (non degree)

Greer Shop Training, Chicago, Illinois
Dunwoody Institute, Minneapolis, Minnesota
Hankin School of Mechanics, St. Louis, Missouri
Hobart Welding School, Troy, Ohio
Milwaukee Vocational School, Milwaukee, Wisconsin
Area X Vocational School, Cedar Rapids, Iowa
APPENDIX B

SCHOLARSHIPS AND FINANCIAL AID FOR STUDENTS
ENTERING AEROSPACE SCIENCE STUDIES

Bausch and Lomb Science Scholarships

Description. Three or four scholarships for the study of science at the University of Rochester, Rochester, N. Y.

Information. The Director of Admissions, University of Rochester, Rochester, N. Y. 14627

Civil Air Patrol Scholarships

Description. Nineteen scholarships to Civil Air Patrol Cadets for the study of aeronautical engineering, teacher training, and humanities (girls) at school of their choice.

Information. CAP Undergraduate Scholarship Program, National Headquarters, Maxwell AFB, Alabama

Coop Work-Study and Vacation Work-Study Programs
In Govt. Agencies in Washington, D.C. Area

Description. Coop work-study for a five year program when studying accounting, architecture, cartography, chemistry, economics, engineering, mathematics, meteorology, oceanography, physics, and statistics at college of student's choice.

Information. U.S. Civil Service Comm., Information and Examining Office, 800 E Street, N.W., Washington, D.C.

Gas Technology Option Scholarships

Description. For study of gas technology or civil, chemical, or mechanical engineering at Illinois Inst. of Technology.

Information. Personnel Director of local gas company; or Chairman, Education Program, Institute of Gas Technology, IIT Center, Chicago, Illinois 60616
General Motors Institute Engineering Program

Description. Five year coop program for men studying electrical, industrial, or mechanical engineering.

Information. Admissions Officer, General Motors Institute, 1700 West Third Ave., Flint, Michigan 48502

Hughes Undergraduate Part-Time Program

Description. Coop program for those studying engineering, physical sciences, electronics or a related discipline in a college or junior college in the vicinity of a Hughes Aircraft Co. facility.

Information. Educational Relations, Corporate Office, Hughes Aircraft Co., Culver City, California

Lockheed Leadership Fund Scholarships

Description. Fifteen scholarships for the study of business administration, finance, or a science related to the aerospace industries.

Information. Lockheed Leadership Fund, Lockheed Aircraft Corp., P.O. Box 551, Burbank, California

Mathematical Association of America Annual National High School Mathematics Test

Description. Competitive examinations which may qualify individuals for financial aid particularly for further study in the field of mathematics.

Information. W. H. Fagerstrom, Executive Director of High School Contests, M.A.A., Pan American College, Edinburg, Texas
N S P E Engineering Scholarships

Description. Five civil engineering, one mechanical or electrical engineering, and one chemical engineering scholarships offered annually.

Owens-Illinois Scholarships

Description. Four year scholarships to selected colleges for the study of physical science, engineering (ceramic, industrial, mechanical), business administration, or economics.

Information. The Director of Admissions of the following colleges and mention the Owens-Illinois program:

Baylor University, Waco, Texas
Ohio Wesleyan University, Delaware, Ohio
Cornell University, Ithaca, New York
Georgia Institute of Technology, Atlanta, Georgia
Purdue University, West Lafayette, Indiana
University of Illinois, Urbana, Illinois
University of Wisconsin, Madison, Wisconsin
Northwestern University, Evanston, Illinois
Rutgers University, New Brunswick, New Jersey
University of Toledo, Toledo, Ohio
Ohio State University, Columbus, Ohio
Stanford University, Stanford, California

Pittsburgh Plate Glass Foundation Merit Scholarships

Description. Thirteen competitive scholarships based on results of the National Merit test and 17 scholarships based on the National Merit test given to residents of towns having Pittsburgh Plate Glass Co. Plants. Distribution in the sciences are 4 in chemistry or chemical engineering and 4 in ceramic, chemical, industrial, civil, electrical, or mechanical engineering.

Information. Pittsburgh Plate Glass Foundation, One Gateway Center, Pittsburgh, Pennsylvania
R.C.A. Institutes Electronics Technology Scholarships

Description. Six scholarships at the R.C.A. Electronics Institutes.

R.C.A. Scholarships

Description. Thirty scholarships for science at selected colleges.

Information. Dr. Douglas H. Ewing, Chairman, R.C.A. Education Committee, Radio Corporation of America, David Sarnoff Research Center, Princeton, New Jersey

Western Union Scholarships

Description. Two scholarships for Creighton and Cornell Universities and two scholarships for any accredited college to pursue studies in science or engineering. Available to children of Western Union employees.

Information. Scholarship Program, Employee Relations Dept., Room 2111, Western Union Telegraph Co., 60 Hudson Street, New York, New York

Westinghouse (George) Scholarships

Description. Ten scholarships for science or engineering study at Carnegie Institute of Technology, Pittsburgh, Pa.

Information. Director of Admissions, Carnegie Institute of Technology, Pittsburgh, Pennsylvania 15213
APPENDIX C

IDENTIFICATION AND ADDRESSES OF FILM SOURCES

af Air Force Film Library, 8900 South Broadway, St. Louis, Missouri

aopa Aircraft Owners and Pilots Association, Mrs. Bernice Dodson, P. O. Box 9277, Southwest Station, Oklahoma City, Oklahoma 73119

auto Autonetics Division, North American Aviation, Inc., Public Relations Dept., 9150 East Imperial Highway, Downey, Calif. 90241

cap Civil Air Patrol, National HQ, Maxwell AFB, Alabama 36112

ces Cessna Aircraft Co., Box 1521, Wichita, Kan. 67201

dac Douglas Aircraft Co., Inc., Advertising Film Services, Dept. G-83, Location G-20, Santa Monica, Calif. 90406

faa Federal Aviation Agency, Film Library AC-142.1, Aeronautical Center, P.O. Box 1082, Oklahoma City, Oklahoma 25062

gm General Motors Corp., Public Relations Staff, Film Library, General Motors Bldg., Detroit, Michigan 48202

iac Iowa Aeronautics Commission, State House, Des Moines, Iowa

mcd McDonnell Aircraft Corp., P.O. Box 516, St. Louis, Missouri Att: W. C. Bunch, Supervisor Cinematography and Exhibits

nasa NASA, Lewis Research Center, Office of Educational Services (3-11), 21000 Brookpark Rd., Cleveland, Ohio 44135

net National Educational T.V. Film Service, Indiana University, Bloomington, Indiana

shl Shell Oil Co., 450 N. Meridian, Indianapolis, Indiana 46206

sui State University of Iowa, Audio-Visual Service, Iowa City, Iowa

Additional film sources

American Airlines, Public Relations, 633 Third Ave., New York City 10017

The Boeing Co., Airplane Div. Library, Wichita, Kansas 67201

National Air Taxi Conference, 1346 Connecticut Ave., N.W., Washington, D.C. 20036

Piper Aircraft Co., Lockhaven, Pennsylvania 17745

Sikorsky Aircraft Div., United Aircraft Corp., Stratford, Connecticut 06602

United Air Lines, School and College Service, Box 6776, Chicago, Illinois 60666

U. S. Navy, District P.I.O., 9th Naval District, Great Lakes, Illinois
APPENDIX D

IDENTIFICATION AND ADDRESSES OF SOURCES OF FREE OR INEXPENSIVE MATERIALS

a Aeronautica, 7506 Clybourn, Sun Valley, Calif. 91352
ac AC Electronic Division, General Motors, Milwaukee, Wisconsin 53201
af USAF, Recruiting, Randolph AFB, San Antonio, Texas
afb USAF, Aerospace Medicine, Brooks AFB, San Antonio, Texas
afr Air France, % Dept., AMN.CA, 1350 Ave. of the Americas, New York City 10019
agc Aerojet General Corp., 9100 E. Palir Dr., El Monte, Calif. 91731
aia Aerospace Industries Association, Inc., 1725 De Sales St., N.W., Washington, D.C. 20036
aiaa American Institute Of Aeronautics and Astronautics, 1290 Sixth Ave., New York City 10019
alc Alcor Aviation, Inc., 2905 Bandera Rd., San Antonio, Texas 78228
all Allison Division, General Motors Corp., Indianapolis, Indiana 46206
aly Avco Lycoming Division, Avco Corp., 550 S. Main St. Stratford, Conn. 06497
bac Beech Aircraft Corp., Aviation Education Dept., Wichita, Kansas 67201
cap Civil Air Patrol % Bookstore, National HQ Maxwell AFB, Alabama 36112
cdc Control Data Corporation, 34th Ave. S., Minneapolis, Minnesota 55420
Centuri Engineering Co., P.O. Box 1988, Phoenix, Arizona 85001

Cessna Aircraft Co., Air Age Education, P.O. Box 1521, Wichita, Kansas 67201

Continental General Life Insurance Co., % Public Relations-319, Hartford, Conn. 06115

Continental Motors Corp., 205 Market St., Muskegon, Mich. 49443

Champion Spark Plug Co., 900 Upton Ave., P.O. Box 910, Toledo, Ohio 43601

Dept. of Agriculture, Conservation Education Branch, USDA-Forest Service, Washington, D.C. 20250

Dept. of Commerce, Environmental Science Services Administration, Coast and Geodetic Survey, Washington Science Center, Rockville, Md. 20852

Eye Gate House, Inc., 146-01 Archer Ave., Jamaica, New York 11435

Estes Industries, Inc., Box 227 Penrose, Colo. 81240

Federal Aviation Administration, Dept. of Transportation, HQ-436, Washington, D.C. 20590

Florida Engineering and Industrial Experiment Station, University of Florida, Gainsville, Florida 32603

The Garrett Corp., 9851 Sepulveda Blvd., Los Angeles, Calif. 90009

General Motors Corp., General Motors Bldg., Detroit, Mich. 48202

Hamilton Standard Div. of United Aircraft Corp., Windsor Locks, Conn. 06096

Iowa Aeronautics Commission, State House Des Moines, Iowa
Jeppesen and Co., 8025 E. 40th Ave., Denver, Colo. 80207

Lockheed Aircraft Corp., 2555 N. Hollywood Way, Burbank, Calif. 91503

Lockheed-Georgia Co., 86 S. Cobb Dr., Marietta, Georgia 30061

Lear Siegler, Inc., 3171 S. Bundy Dr., Santa Monica, Calif. 90406

McDonnell Co., External Relations, P.O. Box 516, St. Louis, Missouri 63166

Martin Marietta Corp., Aerospace Group, Friendship International Airport, Baltimore, Md. 21240

Martin Marietta Corp., Denver Div., P.O. Box 179, Denver, Colo. 80201

North American Aviation Co., General Offices, News Bureau, Dept. 861, 1700 E. Imperial Highway, El Segundo, Calif. 90245

National Aerospace Education Council, 806-15th St., N.W., Room 616, Washington, D.C. 20005

Naval Aviation News, Dept. of the Navy, Washington, D.C.

National Association of Rocketry, 1239 Vermont Ave., N.W., Washington, D.C. 20005

National Aeronautics and Space Administration, Lewis Research Center, 21000 Brookpark Rd., Cleveland, Ohio 44135

Naval Aviation Safety Review, Norfolk, Virginia

National Geographic Society, Washington, D.C. 20036

Pan American World Airways, Pan Am Bldg., Educational Services, New York City 10017
rca Radio Corporation of America, Defense Electronic Products, Camden, New Jersey 08102

rdc Rocket Development Corporation, Seymour, Ind. 47274

rea REA Express, 219 East 42nd St., New York City 10017

rmc Rand McNally, Merchandise Mart, Chicago, Illinois

sae Society of Automotive Engineers, 485 Lexington Ave., New York City 10017

sgc Sperry Gyroscope Co., Div. of Sperry Rand Corp., Great Neck, New York 11020

sol Solar, A Div. of International Harvester Co., 2200 Pacific Highway, San Diego, Calif. 92112

stas STAS Instructional Materials, Inc., 2100 Fifth St., Berkeley, Calif. 94710

swf Swift and Co., Chicago, Illinois

tex Texaco, Inc., 135 East 42nd St., New York City 10017

tho Tom Hook Associates, 3726 Oliver St., N.W., Washington, D.C. 20015

trw TRW Corp., Systems Group, One Space Park, Redondo Beach, Calif. 90278

usc United Aircraft Corp., 400 Main St., East Hartford, Conn. 01608

ual United Air Lines, School and College Service, Box 8776, Chicago, Illinois 60666

uss United States Steel Corp., Pittsburgh, Pa.
APPENDIX E

PUBLISHERS OF AVIATION AND SPACE PERIODICALS

Aerospace. Aerospace Industries Association of America, Inc., 1725 De Sales St., N.W., Washington, D.C. 20036 (monthly)

Aerospace Historian. The Air Force Historical Foundation, Bldg. 819, Bolling AFB, Washington, D.C. 20332 (quarterly)

Airways. Werner & Werner Corp., P.O. Box 1136, Santa Monica, California 90406 (monthly)

Air Classics. Challenge Publications, Inc. 7805 Deering Ave., Canoga Park, California 91304 (bi-monthly)

Air Facts. Air Facts, Inc., 70 Nassau St., Princeton, New Jersey 08540 (monthly)

Air Transportation. Budd Publications, Inc., 26 Beaver St., New York, New York 10004 (monthly)

Air Travel. The Rheuben H. Donnelley Corp., 209 W. Jackson Blvd., Chicago, Illinois 60606

Antique Airplane Association News. Antique Airplane Assn., Rte. # 5, Municipal Airport, Ottumwa, Iowa 52501 (monthly)

Approach. Naval Aviation Safety Review, Naval Aviation Safety Center, NAS, Norfolk, Virginia 23511 (monthly)

Flight. Air Review Publishing Corp., 2700 N. Haskell Ave., Box 750, Dallas, Texas 75221 (monthly)

Pilot. Aircraft Owners and Pilots Association, 4650 East-West Highway, Bethesda, Maryland 20014 (monthly)

Plane & Pilot. Werner & Werner Corp., Box 247, Pacific Palisades, California 90272 (monthly)

Private Pilot. Callant Publishing Co., 116 E. Badillo St., Covina, California 91722 (monthly)

Sport Flying. Challenge Publications, Inc. 7805 Deering Ave., Canoga Park, California 91304 (monthly)
APPENDIX F

MISCELLANEOUS REFERENCE SOURCES

Cumulative Career Index. (An annual compilation with quarterly supplements), Chronicle Guidance Publications, Inc.

Occupational Education Programs Serving Iowa Students. Department of Public Instruction, Des Moines, Iowa 50319.

CHAPTER V

SUMMARY, CONCLUSIONS, AND RECOMMENDATIONS

In October, 1957, the U.S.S.R. launched Sputnik into orbit and the world entered the Space Age. The influence of the Space Age on the United States was best shown by the changes in schools and employment.

Schools were criticized for not developing educational programs with more imagination, innovation, and holding power. Results were, in many schools in the United States, new programs, increased activity in guidance services, encouragement of innovative teaching methods, and broader curricular offerings to interest the greatest possible number of students.

A follow-up study of Dexfield Community High School graduates completed in 1963 indicated around 50 per cent of the college enrollees were attending Iowa State University and nearly three-fourths of this group were pursuing engineering studies. Of the graduates who were enrolled in technical schools over 60 per cent were pursuing electronic technology courses.

General comments taken from the 1963 follow-up study questionnaire indicated many graduates hoped more science and elective courses could be added to the Dexfield curriculum. Many graduates favored the aerospace industries for their future employer.
I. SUMMARY

It was the purpose of this report to develop a science course of such scope and content that a curiosity of aerospace sciences would be initiated and would also inform the student of the career potentials in the aerospace industries for the Dexfield Community High School, Redfield, Iowa.

The first step in the procedures was a historical brief of aerospace education in the United States. America became a world power following World War II and the airplanes' part in building this position was a vital contribution. Educators and laymen interested in aviation and how aviation was contributing to a changing world were hopeful this information could be included in school programs. An organization to further this aim was formed in 1947--The National Aviation Education Council (NAEC). The name was changed to National Aerospace Education Council in 1962. The NAEC fosters and promotes workshops for teachers, in-service training, and publishes materials to be used in grades K through 12. Aerospace Science and Social Science courses have been added to curricular programs in many schools in the United States and flight training has become a part of school programs in California, Kansas, Georgia, and Wisconsin. The latter state's program was federally
funded under Title III of Public Law 89-10.

The second step in the procedure was a review of the literature. Selections on guidance, curriculum, and occupations in the Space Age were surveyed.

Space Age guidance reaffirms the principles of attempting to aid the individual and involvement of teachers in the guidance service.

With the world moving faster and young people being more aware of current happenings the guidance service must be receptive to new ideas, methods, and changing times. Concepts of work have changed, over emphasis on academic studies, over control of classroom situations with the possible result of creating human cybertrons, rapid change and growth of technology, and the rapidity of which knowledge is being amassed are dimensions of guidance in the Space Age which demand that the guidance service cannot be static but, must be dynamic and move out actively to facilitate the educational process.

Space Age curriculum must shake the bonds of traditionalism and provide for the student in a contemporary or projected society. The holding power of schools was lessening and school traditionalism was felt to be the cause. It was shown that schools who adopted changes did more to

1NASA, op. cit., p. 42.
challenge and hold students than those who remained static. It was also pointed out that curriculums and courses of study must be re-evaluated on a regular short-time basis and changes accomplished when needed, not in wholesale lots presupposing a time lag would be in the school's favor.

The Civil Air Patrol related seven modern curriculum trends to Space Age education as a rationale for Aerospace Education as Aerospace Education had been shown to challenge students and increase the school's holding power.

Occupations in the Space Age began to skew more to skilled craftsmen, trained technicians, and those occupations requiring greater degrees of education. The aerospace industries' growth was active and would continue to be active into the mid 1970's. Although government spending cut-backs slowed activity in the space program civilian consumer products developed from space program research were expected to keep the industry healthy and growing.

Four of the aerospace industries, Electronic, Data Processing, Air Transport, and General Aviation employ more

3 CAP, loc. cit.

4 Samuel J. Saden, "Curricularizing Space Age Education," Education (Feb., 1965), 35.
than one-half of all aerospace industry personnel and were expected to show steady growth patterns into the 1970's.

The aerospace industries represented great growth potentials, opportunities for skilled and technically inclined people, and motivation for a person to continue his education so as to be able to become a part of this American industry.

The final step of the procedure was to develop an outlined course of study and to include "Teacher Aids and Enrichment" after each teaching unit outline. It was the purpose of the latter inclusion to provide the teacher with: subject-matter information sources from books and periodicals; film suggestions and sources; free or inexpensive supplemental materials; suggested activities and projects; and occupations in the subject matter area and sources of occupational information. The appendix of the outline contained selected schools for aerospace science and technology studies and other information pertinent to the outline.

The outline correlates with FUNDAMENTALS OF AVIATION AND SPACE TECHNOLOGY, Institute of Aviation, University of Illinois, Urbana, Illinois.
II. CONCLUSIONS

Aerospace Science was offered as an elective science course for juniors and seniors during the school years 1965-1966 and 1966-1967. Seventeen seniors (15 males and 2 females) enrolled and completed the course during the 1965-1966 school year. During 1966-1967 school year 18 students (12 seniors and 6 juniors--all males) enrolled and completed the course.

At the end of each school year each member of the Aerospace Science class was asked to complete a statement of their opinions of the course: Did the course fill the need they had for taking the course, and did the course aid or influence their post high school plans? (Of the first group completing the course, only seven had planned to continue their education beyond high school. Four had planned on college and three--all boys--had planned on attending cosmotology school.)

Briefly, the results from the first student evaluation including their activity one year later were:

1. Fifteen felt the course informative and served the purpose.
2. Two felt otherwise.
3. Four were enrolled in four-year colleges--no change from previous plans.
4. One enrolled in nurses' training and has been accepted for stewardess training following graduation--represents change in plans.

5. One enrolled in a junior college and has completed flight training, object commercial aviation--had planned on cosmotology.

6. Four were enrolled in electronic training--two had planned on cosmotology and two no previous plans.

7. One enrolled and completed an electronic drafting technology course--no previous plans.

8. One enrolled and completed a welding trade course and is employed by an aircraft manufacturer--no previous plans.

9. Three enlisted in military service, one is an aircraft mechanic (USN), one is an aviation machinist (USAF), and one is in the Marines--the first two enlisted after the results of their aptitude tests indicated the type of schooling they were qualified for and subsequently received--all three no previous plans.

10. Two were employed--no plans, no change.

The post high school plans of ten of the class of 1965-1966 were influenced by information they had received in the Aerospace Science class.
The second class, 1966-1967, was different from the first group as there were only 12 seniors and 11 of the 12 seniors had planned to continue their education in college prior to the start of the 1966-1967 school year. At the conclusion of the course all felt the course worthwhile and the 12th senior had enrolled in a two-year data processing course. Four of the 11 seniors entering college were planning to join the Air Force R.O.T.C. unit on the campus they will attend and two others, previously undecided on college course of study, had decided on engineering areas used in the aerospace industries. Three of the six juniors were planning on attending college prior to taking the Aerospace Science course. After completing the course one of the three remaining juniors had decided to attend college and two were planning on electronics school. One senior and one junior began flight training at the conclusion of the school year.

All in all, 20 of the 35 students felt their post high school plans had been influenced by the Aerospace Science class and 33 of 35 felt the class was worthwhile and doing what the course purported to do--initiate an interest in the aerospace sciences and inform the student of career potentials in the aerospace industries.
III. RECOMMENDATIONS

Based on the limited experience of two successful years of Aerospace Science at the Dexfield Community High School and the enthusiastic reception of the course by the students it was recommended the course be continued with year-to-year up-dating until such time the course no longer serves the best interests of the students and the school.
A. BOOKS

B. PUBLICATIONS OF THE GOVERNMENT, LEARNED SOCIETIES, AND OTHER ORGANIZATIONS

C. PERIODICALS

D. UNPUBLISHED MATERIALS

Beech Aircraft Corp. Job Titles (Furnished by the Personnel Dept., Beech Aircraft Corp., Wichita, Kansas.).

Collins Radio Co. Job Titles (Furnished by the Personnel Dept., Collins Radio Co., Cedar Rapids, Iowa.).

McDonald Aircraft Corp. Job Titles (Furnished by the Personnel Dept., McDonald Aircraft Corp., St. Louis, Missouri.).
