Show simple item record

dc.contributor.authorDeAlba, Luz M.
dc.date.accessioned2005-05-11T14:06:35Z
dc.date.available2005-05-11T14:06:35Z
dc.date.issued1996-07
dc.identifier.citationLINEAR ALGEBRA AND ITS APPLICATIONS, July-August 1996, Pages 191-201.en
dc.identifier.issn0024-3795
dc.identifier.urihttp://hdl.handle.net/2092/240
dc.descriptionProceedings of the Fourth Conference of the International Linear Algebra Society.en
dc.description.abstractLet A be an n-by-n nonderogatory matrix all of whose eigenvalues lie on the unit circle, and let and be nonnegative integers with + = n. Let ′ and ′ be positive integers and ′ a nonnegative integer with ′ + ′ + ′ = n. In this paper we explore the existence of a Hermitian nonsingular matrix K with inertia ( , , 0), such that the Stein transformation of K corresponding to A, SA(K) = K − AKA*, is a Hermitian matrix with inertia ( ′, ′, ′). The study is done by reducing A to Jordan canonical form. If C is an n-by-n nonderogatory matrix all of whose eigenvalues lie on the imaginary axis, then the results obtained for SA(K) are valid for the Lyapunov transformation, LC(K) = CK + KC*, of K corresponding to C.en
dc.description.sponsorshipPartially supported by a Drake University Faculty Research Grant.en
dc.format.extent131037 bytes
dc.format.mimetypeapplication/pdf
dc.language.isoen_US
dc.publisherElsevier Scienceen
dc.subjectInertiaen
dc.subjectStein transformationen
dc.subjectNonderogatory matricesen
dc.subjectAlgebraen
dc.title"Inertia of the stein transformation with respect to some nonderogatory matrices"en
dc.typeArticleen


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record