"Inertia of the stein transformation with respect to some nonderogatory matrices"

DSpace/Manakin Repository

Show simple item record

dc.contributor.author DeAlba, Luz M.
dc.date.accessioned 2005-05-11T14:06:35Z
dc.date.available 2005-05-11T14:06:35Z
dc.date.issued 1996-07
dc.identifier.citation LINEAR ALGEBRA AND ITS APPLICATIONS, July-August 1996, Pages 191-201. en
dc.identifier.issn 0024-3795
dc.identifier.uri http://hdl.handle.net/2092/240
dc.description Proceedings of the Fourth Conference of the International Linear Algebra Society. en
dc.description.abstract Let A be an n-by-n nonderogatory matrix all of whose eigenvalues lie on the unit circle, and let and be nonnegative integers with + = n. Let ′ and ′ be positive integers and ′ a nonnegative integer with ′ + ′ + ′ = n. In this paper we explore the existence of a Hermitian nonsingular matrix K with inertia ( , , 0), such that the Stein transformation of K corresponding to A, SA(K) = K − AKA*, is a Hermitian matrix with inertia ( ′, ′, ′). The study is done by reducing A to Jordan canonical form. If C is an n-by-n nonderogatory matrix all of whose eigenvalues lie on the imaginary axis, then the results obtained for SA(K) are valid for the Lyapunov transformation, LC(K) = CK + KC*, of K corresponding to C. en
dc.description.sponsorship Partially supported by a Drake University Faculty Research Grant. en
dc.format.extent 131037 bytes
dc.format.mimetype application/pdf
dc.language.iso en_US
dc.publisher Elsevier Science en
dc.subject Inertia en
dc.subject Stein transformation en
dc.subject Nonderogatory matrices en
dc.subject Algebra en
dc.title "Inertia of the stein transformation with respect to some nonderogatory matrices" en
dc.type Article en


Files in this item

This item appears in the following Collection(s)

Show simple item record

Search DSpace


Advanced Search

Browse

My Account